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Psychophysical evidence indicates that, in the human retina, the size of the spatial-summation area decreases as

illuminance increases. Such a relationship would be beneficial for the detection of spatial conlrast in the presence
of photon noise. We analyze an image-processing mechanism in which tile area of a strictly positive point-spread
function varies inversely with local illuminance while its volume remains cur, stunt. In addition to its expected ef-
fect of improving spatial resolution as illuminance increases, this mechanism also yields center-surround antago-
nism and all uther manifestations of bandpass filtering and accounts for Ricco's law and Weber's law--including
the failures of both laws as a function of test conditions. The relationship between this mechanism and lateral in-
hibition is analyzed.

1. INTRODUCTION

Many psychophysical and physiological experiments can be

interpreted as showing that light failing upon any one point

of the retina creates an excitatory effect at neighboring points

and that this lateral excitation combines additively with the

direct excitation produced by light itselL l Psychophysical
evidence also indicates that the extent of lateral excita-

tion-the size of the spatial-summation area--increases as
retinal illuminance decreases.2,a

One obvious and undesirable consequence of spatial sum-

mation is, in effect, to blur the neural image, and so it is nat-

oral to look for compensatory benefits of the process. A

plausible suggestion is that intensity-dependent spatial

summation is an adaptive response to the intrinsic noisiness

of light. If the effective flux den.sity in an image is I (absorbed

photons/unit time)/hnit area, then both the mean aa_d the

variance of the actual quantum catch per unit time over an

area A equal IA. This statistical relationship imposes a
fundamental constraint on spatial contrast detection.

Suppose that a change in il]uminance from I to I + cI is to

be detected with an error rate of the order of 0.001 and that

the visual system is a perfect detector limited only by quantal
fluctuations. Then the effects of the incident quanta must
be summed over an area A large enough that 4

IA > lO/c 2.

Thus, to detect a 100% contrast change (c ffi 1) lasting one
time unit, ]A, the total number of quanta whose effects are

summed during one time unit must be greater than 10. To

detect a contrast of 1% requires that 1.4 > 100,000:

Individual human photoreceptors collect quanta over areas

of the order of 10 -s mm 2 and integrate their quantum catch

over temporal durations of the order of 0.1 sec. Taking ab-
solute threshold to be 100 quanta/0.1 sec at the cornea, spread

over a retinal area of the order of 10 -3 mm 2, and assuming that

10% of corneal quanta are effectively absorbed by photopig-
ment, I at the absolute threshold of human vision is of the

order of 104 (quant&/0.1 sec)/mm 2. Therefore the value oflA

for an individual receptor at absolute threshold is only about

1/100th of that needed to detect 100% contrast reliably and

about 10 -6 that nceded to detect 1% contrast. Thus, il' no

spatial summation occurred, a 100% contrast could be de-

tected only when retinal illuminance reached 100 times the

absolute threshold level (a statement that is self-contradic-

tory, since the absolute threshold is a contrast detection), and

1% contrast could not be detected until the illuminance was

of the order of 10 _ times absolute threshc,ld (that is, around
1 cd/m2). Spatial summation can thus be seen as a device for

pooling the retinal quantum catch over areas larger than a

single receptor, allowing reliable contrast detection at scotopic

and mesopic light levels. And the fact that the summation

area becomes smaller as illuminance increases can be inter-

preted as an adjustment that tends to keep the summation

area .4 as small as possible at each light level 1, subject to a

requirement of the form 1,4 > 10/c 2, thereby minimizing
needless reductions in spatial resolution.

This noise-compensation interpretation of spatial sum-

mation is well known, especially through the seminal work of

Rose) However, it does not seem to be widely recognized that

an adaptive spatial-summation mechanism c_an auto,rustically

create effects resembling a number of well-known visual

phenomena not generally associated with photon noise, in-
cluding edge enhancement (Mach bands) and other band-

pass-filter effects usually attributed to lateral inhibition. We

have analyzed a model visual system based on the following

assumption: Each point in the retinal image gives rise to a

nonnegative point-spread function whose height is directly
proportional to image intensity at that point and whose vol-

ume remains constant--so that the ,area covered by the point

spread varies inversely with local image intensity. The output

image is the sum of the point-spread functions generated

around each input point. We refer to this operation as "'in-
tensity-dependent spatial summatlon."

This shnple operation prove_ to have a surprising number

of immediate consequences that resemble important features

of human vision. It creates Much bands at edges, sombrero-

shaped impulse responses, and a low-frequency falloffin the

spatial contrast-sensitivity function, tin fact, when the

point-spread function is Gaussian, it yields the same con-

trast-sensitivity function (CSF) as a linear lateral inhibitory

model whose point-spread function is the negative Laplacian

of a Gaussian, as in the theory of Marr and H_ldreth.6] In

addition, the same a-_sumption implies Weber's law (including

its failures as a function of light intensity m_d target size) and

Ricco's law (including the fact that the area -f perfect spatial

0740-3232,/85/101769-18502.00 q:_1985 Optical Society of America
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"summation shrinks as the background light level increases)

and causes visual acuity (the high-frequency cutoff of the

CSFI to increase as the square root of mean luminance. 7

These consequences are robust under changes in the exact

shape of the point-spread function (i.e., square, triangular,

Gaussian, etc.) and depend only on the fundamental as-

sumption that the area under that function is reversely pro-

portional to local image intensity.

Finally, it is noteworthy that this spatial-summation

mechanism mimics rmt only the main effects usually attrib-
uted to lateral inhibition, such as Mach bands, but also the

apparent dependence of lateral inhibition itself on the mean

luminance level. For example, the response to small spots has

a distinct sombrero form only when the spot is superimposed

upon a relatively high-intensity background. When back-

ground intensity is low the "negative" brim of the sombrero

becomes vanishingly small, as though lateral inhibition failed

at low light levels--a result that has been reported for retinal

ganglion cells s.s and that is also found in psychophysical

measurements of spatial contrast sensitivity.lO, H Here,
however, there is never any inhibition--all the model's con-

sequences are due to changes in the width of a nonnegative
point-spread function. A similar realistic dependence on

background intensity also appears in the model's response to

other stimulus configurations commonly used in psycho-

physical experiments. For example, the background intensity
level beyond which detectability of a target obeys Weber's law

shifts upward as the area of the target decreases. ]2

Organization

In this paper we describe the basic mathematical properties

of image processing by intensity-dependent spatial summa-

tion. Our purpose is to introduce a theoretical tool that may

prove useful in visual system modeling and also in image-

processing technology. In Section 2 we define the simplest

intensity-dependent spatial summation (IDS) operator and

derive some general results used repeatedly later on. In

Sections 3 and 4 we describe the effects of applying this IDS

operator to images commonly used in psychophysical mea-

surements of spatial contrast sensitMty, such as edges, spots,

and gratings. By and large, these effects are qualitatively in

agreement with the results of psychophysical experiments,
but we point out some significant differences and comment

on their implications. We also note similarities between the

consequences of IDS processing and physiological results
frequently cited as demonstrations of lateral inhibition in the

retina. In Section 5 we discuss the relationship between IDS

operators and linear operators commonly employed in visual

theory and the potential value of IDS operators in artificial

image processing. In Section 5 we also describe a generalized

IDS operator that retains the basic properties of the model

introduced in Section 2 and allows a better fit to psycho-
physical data.

Although IDS is in a sense motivated by photon-noise

considerations, this paper focuses on its consequences for
deterministic input images, for which analytic results can be

obtained relatively easily. That is not so for Poisson noisy

images, which apparently mus! be approached by simulation

methods and properly form the subject for another paper.

W. N COrIISWre('l and d. 1. Yelh,tt, ,Jr.

2. THE INTENSITY-DEPENDENT SPATIAL-
SUMMATION MODEL

Figure 1 illustrates the basic ideas of the IDS model. A two-

dimensional input image (here, a sharp edge) is recorded by
an array of photoreceptors, and the)' feed into a summation

network that performs the IDS operation. That operation
consists of two stages. First, each receptor gives rise to a

_konnegative point-spread function whose center height is

directly proportional to the intensity of the input image at that

recepto_ and whose volume is constant--so that its area (that

is, the volume divided by the center height) is inversely pro-

portional to the input intensity. Second, these point-spread

/'unctions are added together to create the output image.

That image is then read out over an array of output chan-

nels-one for each receptor location.

In this section we define the general class of IDS operators,

give an example based on Gaussian point-spread functions,
and derive some useful technical results. In Section 3 we work

out the response properties of IDS models for a variety of
one-dimensional input images, and in Section 4 we do the

same for two-dimensional inputs. Whenever possible we
derive the general properties that characterize the model's

responses independent of the exact shape of the point-spread

function. Then in every case we give the specific form of the

response for the special case of a Gaussian point-spread

function and illustrate the profile of that response graphi-

cally.

For real I_ematical convenience, our analytic treatment as-

sumes that the photoreceptors are infinitely small relative to

the size of the input and the output images. That is, we deal

with the continuous case, in the same spirit as theories that

model retinal processing by s cm_volution of continuous ret-

inal images with continuous impulse responses. This con-

tinuous approximation to the discrete nature of actual retinas

and man-made image processors provides realistic results up

to input image intensity levels that would cause the point-

spread function to become narrower than a single receptor or
a single pixel.

Notation and Assumptions

l(x, y) denotes the input image intensity at point (x, y); O[l(x,

y)](p, q) denotes the output image intensity at point (p, q)

when the input image is ](x, y). (p and q refer, respectively,

to the x and the .3' coor_linates in the output image plane.)
When the input image is obvious, we occa._ionally denote the

output image simply as O(p, q).

The basic idea of the model is that each input point (x, y)

contributes a nonnegative point-spread value to every output

point (p, q), the size of the contribution depending on the

input intensity value l(x, y) and the distance from {x, y) to

. (p, q}. Thus we need to specify a spread function of the

general form Sl(x, y), (t9, q), 1)] that gives the contribution

from (x, y ) to (p, q) when the input intensity at (x, y) is I. We
assume first that

(1) S is nonnegative.

(2) S is spatially homogeneous and circularly symmetric.

(That is, S can be written as a function of two real variables

in the form SIl(x - p)O + O' - q}"], II.}

Next we formalize the fundamental assumption that the
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Fig. I. Schematic diagram of the ID.q model. From t_p to bottom: input image profile (here. s sharp edge); photoreceptors; photoreceptor
point-spread funct ions {fiw the Gaussian case of the model); output channels {arrows); output image profile {dots).

area covered by the point-spread function around each input

point varies im,ersely with the input intensity at that point.

To accomplish this we assume that the center height S(0, I)

is directly proportional to the input intensity I, while the

volume under S remains constant for all nonzero values of
I:

(3) SI[(x -p)'- + (y-q)2],I} =I×S{I × [(x _p)2+ (y
- uY], _I.

For any spread function S, integrating the right-hand side

of assumption (3) over p, q yields a constant value Vs that is

independent of/, while the height at the center [i.e., S(0, I)]

equals I × S(0, 1). So the equivalent area under the point-

spread function around any input point (volume divided by

center height} is 1H times the constant V,,/S(O, 1). The choice

of the volume constant V_ is arbitrary; it simply sets the value

of the model's baseline response i_ unif0rm-field inputs, as

is shown below in Theorem 1. We take this to be unity.

(4) The integral ofSJl(x - p)2 + (y - q)2]0 II over the p,
q plane equals 1.0.

Given assumption (4), the remaining constant 1/5'[0, 1]

equals the equivalent area of the point-spread fimction when

the input intensity I = 1. This parameter determines the

numerical values of the point-spread areas for all input in-

tensities and needs to be chosen appropriately to fit the model

to psychophysical data. We make no specific a_umption here

about its value since that will depend on the units used to

measure retinal area and light intensity.

In view of assumption (3), the point spread S is really a

function of a single variable, so we can suppress the redundant

intensity variable and express the fundamental assumption
of the model as follows.

The point spread/rom input point (x, y) to output point
(p, q) is

l(x, y) × S[Itx, y) × [(x - p)_ + O' - q)_]l,

where I(x, y) is thc input image inter,_ity at ix, y) and S is

a nonnegative real/unction for which

f-: f-: S(P 2+ q2)dpdq=l.

Different cases of the model can then be created by different

choices of the basic spread function S, i.e., S may be Gaussian

(as in the example below), square, exponential, etc. However,

as we shall see, the exact choice makes little difference.

Note that the functional form of the spread function re-

mains constant as I(x, y) varit_. For any input intensity I the

point spread takes the form I x S(lr2), where S is a fixed

function and r is distance from the input point. Thus the

effect of the input intensity at each point is simply to rescaie

the spread function, leaving its basic form unchanged. As will

be seen below in Theorem 3 and subsequently, this is an im-
portant feature of the model.

Finally, we assume that the output image is the sum of the

point-spread functions:

X SIl(x, y) X [(x - p)2 + _, _ q}Z]idxdy"

Assumption (5) entirely captures the notion of an IDS oper-
ator.

Example: The Gaussian Case

Suppose that S is the Gaussian function

S(x 2 + y2) = (1/2_r) × exp[(-1/2 ) × (x 2 + y_)]

corresponding to the joint probability density function (pdf)

of two independent normal random variables, each with mean

zero and variance one. Then the point spread around an

input point (x, y) with intensity l(x, y) is

[l(x,y)/2r] X exp[(-1/2) × Itx, y)[(x - p)2 + (3, _ q)_]l,

i.e., a bivariate normal density function, centered at that point,

corresponding to the joint pdf of two normal random variables,

each having variance 1//. Figure 2 illustrates this point-

spread function for several values of/. We use this example
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input iMensit_:l

Fig. 2. Point-spread functions of the Gaussian case of the 1DS model
shown for four input intensities.

throughout to illustrate the model. Mathematically it is

uniquely convenient because the Gaussian is the only circu-

larly symmetric function that is also separable. However, as

was noted earlier, the effects of IDS are largely independent

of the exact shape of the spread function. To demonstrate

this, our theorems are proved for arbitrary spread functions

that satisfy assumptions (17-(4).

This Gaussian version of the model has a point spread

whose effective width is 6/x/']. Assuming a photoreceptor

width of 1/150-deg visual angle (2 #m), the point spread would

shrink to a single receptor when 1 becomes greater than

800,000. We have confined our examples to I values less than

10,000 to keep the results of our continuous analysis realistic.

In the figures below, the spatial milts are degrees. The graphs

show output image profiles over a retinal distance of 4-2 deg,

plotted at 150 points/deg.

Preliminary Resuhs

An easy way to see that the model is nonlinear is to note the
following.

Theorem 1

The output to any nonzero uniform field is the uniform field

1.0. [That is, when l(x, y) = 1 > 0, O(p, q) - 1.]

Proof

Put ](x, y) = ] in assumption (5) and make the change of

variable u = (x - p)x/'], v = (y - q)x/l. (Note: The output

to a zero-intensity uniform field is again a zero-intensity field.

Thus it might seem that there is a discontinuity in the uni-

form-field response. In practice this is not so, because any

real input image is limited in spatial extent, whereas Theorem

I assumes a truly infinite uniform field. For uniform-field

inputs of any finite size, the response can be made as near zero

as desired by making the input intensity sufficiently low.)

The physical meaning of Theorem I can be understood in

the following way. Because the volume under the spread

function at each point is constant and independent of the

input intensity, the total output of the system is independent

of its input--the effect of any input image is not to change the

total amount of output but only to change its spatial distri-

bution. Since a spatially uniform input image must generate

a uniform output image, it follows that the output mnplitudes

corresponding to all uniform input images must be iden-
tical.

The next theorem simply documents a property built in by

assumption (2): The IDS model is invariant under transla-

tions and rotations.

T. N. ('t,rnswet._ and J. 1. Yellott, Jr.

Theorem 2

If the input image is translated or rotated by any amount, the

output image is unchanged except for translation or rotation
by the same amount.

Proof

For translation: To represent a translation of the output to

image l(x, y) li.e., O[l(x, Y}]tp - j, q - k )1put p = p - j, q =

q - k in assumption (5) and make the change of variable u =

x+j,v=y+k. This yields

ff l(u -j,v- k) X Stl(u -j, v- k)

X [(u - p}" + (t, - q}'-'Jldudv,

which is the output for the translated input image I(x - j, y

- k). (Note: To simplify notation we omit the limits of in-

tegration in this expression and those below. Unless other-

wise noted, these can always be assumed to be the entire

plane.)

For rotation: 3'0 represent a rotation of the output to I(x,

y) by a counterclockwise angle O we substitute p cos 0 + q sin

0 for p and q cos 0 - p sin 0 for q in assumption (5) m_d make

the change of variable x = u cos 0 + t, sin O, y = v cos 0 - u -

sin 0. Expanding the squared terms, we get

ff l(u cos 0 + v sin 0, v cos 0 - u sin 0)

x SII(u cos 0 + t, sin 0, v cos 0 - u sin 0)

x [(u - p)2 + (v - q)'-'lldudv,

which is the output for the rotated inpul image l(x cos 0 + y

sin O, y cos 0 - x sin 0).

The final theorem of this section describes the effect of

multiplying all the input image intensities by a common fac-

tor-i.e., the effect of changing the input image from l(x, y)

to c × l(x, y}, as would happen with the retinal image of a real

scene it the illumination l'alling upon that scene changed.
This simple theorem is really the mathematical heart of the

model: From it we can prove that Weber's law holds at edges,

t}mt Ricco's law holds for spots on a dark background, m_d tlmt

visual acuity increases in proportion to the square root of the

mean luminance level--all regardless of the specific form of
the point-spread function.

Theorem 3 [Scaling Theorem)

For every positive constant c and ever), input image l(x, y)

O[c1(x, y)l(p, q) = o[,r(xA/7., y/v"/:)](pvq., q,/_). (1)

In words, this means that the effect of multiplying all the in-

tensities in the input image by a constant c is the same as first

expanding the original image spatially by a factor x,_ along

both axes, then applying the summation operator in as-

sumption (5) to that image, and finally shrinking the output

image back to the original size. Thus, for example, each

spatial frequency [ in the image cl(x, y) is treated like fre-

quency [/x/_ in the image l(x, y).

PI'OOf

The right-hand side of Eq. (]) is

f.fl(x/x/c,..vlv'_:),_I/(x,/xG,yl\:c)

x [(x - pv':c)':+ 0' - qCc)=Jldxd.y.
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Making the change .1 variable u = x/x"7, t, = 3/x/'c, we ob-
" tain

.ff (l(u, t,) X S[cl(u, v) X [(u - p)e 4 (v - q)2J]dudv,

which is the left-hand side of Eq. (1).

3. RESPONSES TO ONE-DIMENSIONAL

PATrERNS: EDGES, BARS, AND GRATINGS

Suppose l hat the input image is intzinsicaUy one dimensional,

i.e., l(x. y) = I(x). (Because of Theorem 2, it is sufficient to

consider clnly vertical one-dimensional input&) Making this
substitu'J,n in assumption (5), we have

O[l(x )](p, q) = f x/_ f v/r_Sl[(x _ p)x,Q-(-x_]2

+ I(y - q)_FId:,,dx.

Now in the inner integral (over y) we make the change of
variable v = (y - q)_ to obtain

where $ is the line-spread fimction corresponding to S, given
by

= f_'. Six=+ y )dy. (a)

It is easily s.,mn that $ is always nonnegative, s)Tametric about

the origin, and integrates to 1. In the Gaussian example we
have

$(x) = f_: (1/eTr)expl(-1/2)(x 2 + y2)ldy

= (I/x/'_)exp[(-l/2)x_],

so the line spread around a line with intensity I is a normal pdf
centered on the line, with variance. 1/I. Thus for the Gau_ian

ease the response to one-dimensional patterns is given by

Ol;(>,l(v): f" l,/s-iTil /T .i

X exPl(-ll2)I(x)(x - p)2]dx. (4)

Step Response

Suppose that tfx) is an edge of the form t(x) = ! forx _< 0, I(x)

= I + D for x > 0 (that is, a step). Then, for the Gaussian

case, Eq. (4) yields the response

O(p) = N[x(I + Dp/2] + Nl-xv'7], (5)

where N is the cumulative normal distribution function:

Nfel = £L ('/v_)exPl(- l/"h'-'id_.

Figure 3 shows the Gaussian-model step respon_ li.e., F,q.(5)]
for a number of edges. These edges differ in ilhlminance (that

is, t), but the ratio of the lighter to the darker side is the _me

for all--i.e., the ratio (I + D)/I, and consequently the Weber

fraction D/I. is a c,mstant. (Here D/I = 10.) It.can be seen

that the response displays Math hands svnimetrically located

on either side of the step. At the step itself the response is
always 1.0

To understand intuitively how Mach bands can be created

\'ol .. N. lt_'thl(,i,(,r l!lSY_e<lOpt.,%w. Ani A 1773
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Fig. 3. Edge-response profiles. The inpul image was a _l_p ai zero
from intensity I to 1 4- D. 1/1) = 10 in all cases. Curve 1, 1 ,= 0.1;
curve 2,/ = I; curve3, I = 10;curve 4,1 = 100.

by a purdy positive point-spread mechanism (i.e., without

lateral inhibition) it may be helpful to reexamine Fig. 1.

bearing in mind that the output, at each point is the stern of the

spread functions above that point. As the edge is approached

from the left. (i.e., from the low-intensity side), the output
decreases below the baseline level bec.auae there is less spread

excitation coming from receptors on the right-hand aide of the

edge, which have narrower spread functions. Conversely, as

the edge is approached from the high-intensity side, the out-

put rises shove the baseline level because of the extra excita-

tion contributed by recepi_Jrs on the k,w-iniensity side, which
have wider spread functions.

A second important feature of the response profiles in Fig.

3 is that the effect, of increasing I is to move the peak and the

trough of the Mach bands closer to the edge iLself, but their

amplitudes remain the same. This is a consequence of the

fact that the input edges here all have the .same Weber fraction

D/L Analysis of Eq. (5) shows that the peak of the positive-

going Mack band occurs at Pmax = [(I/D)log(1 + D/I)p/2,
and its value there is

O(Pmax) = Nit(1 + I/D)log(1 + D/I)]I/_-]

+ N[- !(liD)log(1 + D/II]_/2[,

which is a function only of the ratio DH. The trough of the

negative-going Mack band occur_ at Pmin = -Pmax, and the

output value there is 1 - [O(Pmax) - I] (i.e., the peak is as far

above the ba:_eline response 1.0 as the trough is below it.)

Thus the peak and trough values of the step response depend
only on the Weber fraction D/I. Assuming a downstream

detector mechanism that registers a perturlmtion in an oth-

erwi_ uniform fieht when the out put value at any point differs
from the baseline 1.0 response by more than some threshold

value, it follm_ that the Gaussian version of the model implies
Weber's law for edge detection.

This result is not unique to the Gaussian case of the ID,q

model. Instead it holds for all cases [i.e., for all choices of the

point-spread function S that satisfy assumptions (1)-(4)].
The following theorem shows why.

Theorem 4

Suppose that I(x, y) is a straight edge separating a uniform

field of intensity I from a field of intensity I + u:l. Then the
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maximum and minimum values of the output to l(x, y) are

independent of 1 and depend nnly on the Weber fraction u,.

Proo[

Because of Theorem 2 it is sufficient to consider only vertical

edges of the forml(x,y) = l(x) = ] (for x > 0); = ] + wl (for

x >- 0). Suppose that V(x) is a vertical edge image defined

by V(x) = l forx <0; = l+wforx >0. Assume that the

maximum value of the output O[ V(x )](p) occurs at p = Pmax

and that the minimum value occurs at p = Pmin. Let ](x)

= I for x < 0 and I + wl for x > 0. Then ]ix) = I × V(x), and

so from Theorem 3 we have

o[l(x)]tp) = oll x VCx)ltp)
= o[v(x/vq)ltpv'7) = olv(x)](p_F/).

[The last equality holds because here V(x/_/7) = V(x).] The
maximum value of the last expression in this line occurs at

p_/7 = Pmax and its minimum at p v_ = Pmin, and so the
maximum (minimum) output to l(x) occurs at p = Pmax/v/']

(p = Pmin/_/]) and has the same value there that the output

to V(x) has at Pmax (Pmin).
Two other features of the Gaussian-case step response can

also be shown to be common to all IDS models: the fact that

the output value at the step itself is always 1.0 and the fact
that the locations of the peak and trough of the response move

closer to the step as the baseline input-intensity level I in-

creases. (The latter is true under the conditions that pre-

vailed in Fig. 3, i.e., the edge separates fields of intensities 1

and I + D, and the Weber fraction D/I remains constant while

I changes.)

To prove the first point, suppose that the input image is a
vertical edge of the fl_rm l(x,y) = I for x < 0 and I + D forx

> 0. We are concerned with the value of the output image

0(/9, q) along the vertical axis p = 0, and since it is sufficient

to consider only a single point, we pick the origin [i.e., the poh_t

(/9, q) = (0, 0)]. Then, from assumption (5), the output for an

arbitrary spread function S is

I_iI o0(0, O) = -® 1 X SII[x _' + y2]jdxdy

I_Yo+ (1 + D) × S[(I + D)[x-" + y2]tdxdy.

We know that I × S{l[x 2 + y'-']] is a circularly symmetric
function whose integral over the entire x, y plane is 1.0, and

the first integral in the expression above integraues this

function over the half-plane x -< 0, so its value must be 0.5.

The same argument applies to the second integral, and con-

sequently the entire expression equals 1.0.

Now to show that the distance from the edge to the locations

of the maximum and minimum output values decreases as 1

increases, we can use the fact, shown in the proof of Theorem

4, that if Pmax is the location of the maximum when the edge

separates fields of intensities 1 and 1 + w, then the maximum

occurs at p = Pmax/x/_ when the fields are I and I(1 + w).

So the distance between the location of the maximum and the

edge itself varies inversely with V_. The same result for the

minimum follows from the same argument.

The main result of this section is that for all IDS models,

the step response always satisfies Weber's law. The same is

also true of the response to bars and spots with sharp edges,

provided that they are large--meaning large enough that there

T. N. Corns_eel and .l I. Yellott, Jr.

is no interaction between the responses it, 1heir lw, opposite

edges. The next subsection should clarify this poinl.

Bar Response

Again, because nf Theorem 2, it is sufficient t.o consider only

vertical bars. Suppose tha! l(x, y) = l(x) = 1 (a positive

constant) for Ixl > w/2; l(x) = I +D for Ixl -< w/2 (so the
input is a bar ot width W and intensity D superimposed upon

"a uniform field of intensity I). Then the output K,r the

Gaussian model is

O(p) = NIv7 × (p - W/2il + NI-,/7/× (p + W/2)]

+ N[(I + DP ,'z × (14"/2 - p)]

- N[-(I + D) ]/2 X (W/2 + p)]. (6)

The form of the bar response depends on the bar width W and

the background intensity 1. Figure 4 illustrates the width

effect: A narrow bar on a fairly intense background produces

a response whose profile is sombrero shaped, quite like the

line-spread function of a linear lateral-inhibitory model based
on a difference of Gaussians or the negative Laplacian of a

Gaussian. A wide bar of the same intensity on the same

background produces Mach bands at both edges, and inside

the edges the response returns to the baseline response value,

just as would be expected from a linear model whose modu-

lation transfer function (MTF) vanishes at the origin. The

peak and trough amplitudes of the Math bands in this case

I=100 DELTA1=1000WIDTH=O.I

i i

I=100 DELTAI.=lOOCWIOTH=I

\

i I

P.

_../ /,,
,/

i I

Fig. 4. Bar-response profiles for a narrow bar (top) and a Wide bar
(bottom) on a high-intensity background. Background intensity. I
bar intensity, I + A/. Bax widths are as indicated in the figure. Tick
marks on the abscissa indicate a width of 1.0.
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Fig. 5. Response profiles for the same hats as in Fig. 4 when the
background has low intensity•

depend only on the Weber fraction DH, so the detectability
of wide bars should obey Weber's law.

Figure 5 shows output profiles for the same narrow and _ide

bars, but now superimposed upon a low-intensity background.
The top panel illustrates how in this case the inhibitor), lobes

of the response to the narrow bar disappear (or, more pre-
cisely, become so broad and attenuated as to be unnoticable),
and only the central excitators., portion of the response is ev-
ident. Thus "lateral inhibition" apparently fails when the
background intensity is low--the receptive fields lose what
appear to be their antagonistic surrounds and seem now to
consist only of positive centers.

The bottom pane] of Fig. 5 shows that the response to a wide

bar also changes dramatically when the background intensity
changes from high to low. Instead of a pair of narrow positive

and negative Mach bands at. both edges separated by an in-
ternal region of baseline-level output, the response now ap-
pears to be uniformly high within the bar, and outside each
edge there is a broad negative Mach band. (If this bar were
made much wider, the response inside its<edges would even-
tually return to the baseline value, so tha_ each edge would
exhibi! both positive and negative Mach bands. In general,
the response profile for any target depends on its si_ relative

to the background illuminance level.) From the standpoint
of a classical receptive-field analysis it might appear that large
receptive-field units retain their antagonistic surrounds at low

light levels, whereas small units lose them--perhaps because
of insufficient quantum catches in the regions feeding the
smaller units. In an IDS system all these effects are due to

!
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in,easily-dependent changes in the area of positive spatial
summation•

Sinusoidal Grating Response

Suppose that the input is a sinusoida] grating of the form l(x,
y) ---l(x) = L(1 + k cos 21r/x): L is the mean intensity level,
k is the grating contrast, and / is its spatial frequency. Be-
cause our operator is nonlinear we know that it must produce
some harmonic distortion. Figure 6 shows the Gaussian-
model response to high- (.00%) and low- (20%) contrast ai-
nusoidal grating inputs. At high contrast levels distortion is
apparent: It takes the form of a spurious second harmonic

that creates noticeable dimples at the peaks of the response.
For low contrast levels, however, the output closely approxi-
mates a pure sine wave. Appendix A shows that for the
Gaussian model the output to a low-contrast sinusoidal

grating of the form l(x) = 1 + k cos 2_rfx is approximately

O(p) = 1 + [27r2f2exp[-2_-_/_]lk cos 27r/p. (7)

The approximation given by Eq. (7) is obtained by solving Eq.
(4) for l(x) -- ] + k cos 2_rfx under the assumption that k e =
0. Consequently it is quite accurate for input contrasts on the
order of 10% or less.

For low-contrast sinusoidal grating inputs, then, the outputs
of the model are effectively sinusoidai, and it makes sense to

speak of its MTF--i.e., the ratio of output contrast to input
contr_qt as a function of input frequency. Let G(f, L) denote
the MTF for mean input level L. Equation (7) shows that

G(/, l ) ffi 27r?'1_exp(-27r2ffz). (8)

To obtain the general form of the MTF we use the scaling
theorem:

O[L(] + k co_ 2,rf_.)](p)

= O[! + k cos 27rfx/v_](p_/-LL)

= 1 + [27r2(//_/rL) -_exp[-2_r2(f/v_)_-]]k co_ 27rfp.

So the MTF is

G(f, L) -- 2_'2(//'_,/-'LL):exp[-2w2(//vf'L)2]. (9)

Figure 7 shows this MTF for a rmlge of mean intensity levels,
plotted in the conventional way on log-log coordinates. In
this plot the MTF shifts bodily to the right as L incream_: Its

peak (the best frequency) occur_ at/= (1/lr_/2) x v_. and
visual acuity (defined as the highest frequency for which the

MTF exceeds any fixed threshold) increases directly as
_/LL.

Both the bandpass characteristics of the h_l'F and its bodily
shift with changes in mean luminance (when the frequency

.-'..-'.• .,-.... •*....-•.

..•••* . . "..••.- . .'........ . "..

°.- • .

Fig. 6. Sinusoidal grating response profiles for high-contrast (90%)
and low-contrast (2(_) gratings•
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Fig. 7. MTP's of the Gaussian IDS model for various input mean
luminance levels.

axis is logarithmic) are general properties of IDS models, in-

dependent of the exact form of the spread function S.

Bandpass properties follow from the fact that very low
frequencies will act like uniform fields and be driven to the

baseline-response level, arid very high frequencies will be at-

tenuated by the basic point-spread operation. Bodily shifts

with mean luminance follow from the scaling theorem, as is
shown by tbe following.

Theorem 5

Suppose that for some range of contrast values the output to

a sinusoidal input of the form l(x) = 1 -I- k cos 2,'fix is another

sinusoid of the form O(p) = 1 + G([) k cos 27rfp. Then for

any mean intensity level L the output to the sinusoidal input
L(1 + k cos 27r/x) is 1 + G([/v/T.)h cos 27rip. [In other words,

the MTF at mean intensity L is G(f/v'_t. ]

Proof

From Theorem 3

OIL(1 + k cos 2r[x}](p) = Oil + k cos 2rff(x/,_/L}](pv/-_)

= 1 + G(f/V_-[)k cos 27rq/v_}(pv_ )

= 1 + G([/v'-LJk cos 2r/p.

Consequently all IDS operators cause the peak frequency of

the MTF, and also any high-frequency cutoff (visual acuity},

to increase proportionally with the square root of the mean

luminance level. These increases continue up to luminance

levels at which saturation begins to occur, i.e., the point-spread
area shrinks to the size of a single receptor.

Psychophybical evidence indicates that the peak frequency

and the high-frequency cutoff of the human spatial CSF show

similar increases with mean retinal illuminance below the

photopic range, though in genera] the changes are smaller than

those expected from an IDS model. A plot of log visual acuity

versus log retinal illuminance based on the data of Schlaer 7

is quite well fitted by a straight line with slope 3/8 (instead of

1/2) up to about 5 Td, after which acuity levels off rapidly.

The spatial CSF's of Van Ness and Bouman m show a peak

frequency that increases by 0.8 log unit (instead of 1) as mean

illuminance increases from 0.09 to 9 Td. Raising mean iilu-

minance beyond this point produces smaller changes in the

CSF peak, and above 90 Td it appears that the entire CSF

becomes independent of the mean luminance level.

Another difference between the behavior of IDS models and
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psychophysical data is that human CSF's generally show a

decrease in sensitivity at the peak frequency as me'an lumi-

nance decreases, m.n whereas the IDS m_lel MTF maintains

a constant gain at its peak frequency.

Discrepancies between lDS-model predictions and psy-

chophysical data obtained at photopic luminance levels are

to be expected in view of the model's automatic saturation

property. It is interesting to note. that the signal-detectability

argument given in Section I implies that reliable detection of

contrasts of the order of 0.1-1% covering an area the size of a

single phot.6receptor requires a quantum catch of the order

of 10_-10 s times absolute threshold, or approximately 10-1000

Td. Over the range 10--1000 Td, then, the visual system loses

its need for spatial summation, and so the disappearance of

an IDS mechanism through saturation would not be disad-

vantageous. In this connection it is worth recalling that rod

saturation occurs in the same range. ]_

Discrepancies below the photopic range call for a different

sort of reconciliation. One approach is to weaken the IDS

model's assumption that the point-spread area varies inversely

with quantum catch. In Section 5 we develop a generalized

IDS model in which that area varies as a lmwer function of the

input intensity. This allows the model to predict visual acuity

and peak-frequency changes with m_an luminance more in

line with empirical results. A second approach is to take into

account the time required for a point-spread effect to disperse

across the retina. When plausible assumptions about this are

combined with the actual temporal condit.ion._ prevailing

during CSF measm ements, preliminary analysis indicates that

the IDS mt_lel yields a rise in peak-frequenc.y sensitivity with

increasing mean luntinance comparable with that exhibited
by human CSF's.

The exact shape of the M'PF of an IDS model depends on

the form of its i_fint-spread function, and so it is ml interesting

coincidence that fi)r the Gaussian case the MTF 1,I_i. 1_)] turns

out to be the same one produced by Marr and Hildreth's linear

DEL2-G model of early visual processing.6 In that model the

image is conwflved with the Laplacian of the Gaussian func-

tion -(l/o'z2_r)expl-(1/2)(x2 + y'-'Wa'z], i.e., with the som-
brero-shaped point-spread function

(1/v/_)2(1/0.°-)2[1 - (x 2 + y2)/2o'Z]exp[-(1/2)(x2 + y2)/02].

The Fourier transform of that point-spread function is

4,c-'(u'-'+'[,_)e_pl-2,_'-',_'-,(u_+ _,")l,

and so its MTF for one-dimensional sinusoidal gratings is

4rreff exp(-2r_a"/z).

It follows that the Gaussian IDS m,_el cannot be distin-

guished from a single channel DELZ-G model by experiments

that simply determine the shape of the CSF at an3 fixed mean

luminance level. [Such experiments generally involve small

contrast values, in the range 10% or less, so that the approxi-
mation in Eq. (9) is valid. For high contrast values the non-

linearity of the IDS model would become an important factor

and could allow an experimental discrimination between the

models.] Marr and Hildreth 6 show that a T)EL2-G filter is

essentially indistinguishable from a difference-of-Gaussians

filter of the sort used by Wilson and Bergen, _4 and so the same

is true of single-channel linear models based on that filter.
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4. RESPONSES TO TWO-DIMENSIONAL

PA3_I'ERNS

Ricco's Law and Weber's Law

Ricco's law states i hat the detectability of a spot of light de-

pends only on the product of its area and intensity. Experi-

mentally, in human vision, this holds for spots up to a certain

critical size--a size that decreases as the background intensity

increasesY .'_ We show here that the IDS model implies that

Ricco's law holds for spots of all sizes on a background field

of zero intensityIin the sense that the peak value of the

output to such an input is the same for all spots of the same

shape that have the same product of area times intensity. On

mmzero backgrounds it causes Ricco's law to hold (in the _me

_on._e) for gpot_ up t.. a crilical area that decrease_ as the

lmckgr()und i,flvnsily i,t(:ren_e,_, dl'he experimental fac! that

_'/1: 4"-'_:

J ..// .

-1 41

Fig. 8. Response profiles fi}r square spats on a dark background.

Spot area (A) times int_ensity H) was held constant at 10. Curve 1,
I -- 1, A = 10; curve 2, I = 10, A = 1; curve 3, I = I00, A = 0.1; curve
4. I : lt)0O, A = 0.01.

Ricco's law holds for only s limilcd range of areas even on a

nominally dark background does not necessarily contradict

the model, since the activity in real visual systems d(_s not

fall to zero in dart:ness.) The ]I-)S model also predicts the

types of confi_3_rational effect reported by Sakii.t) s who found

that two separated spots lying within Ricco's area do not yield

perfect summation but. instead require more total quanta for

detection than a single spot. in the same area.

Figure 8 shows the profiles of the Gaussian IDS-model re-

sponse to square spots of various sizes on a zero background.

The input image here was l(x, y) = I for lyJ _< W/2, lyt -< W/2,

l(x, 3') = 0 elsewhere (so the spot area was W-_L The output

equation in this case is

O(p, q) = IN[(W/2 - p)vT] - NI-(W[ 2 + P)_,/_I

x INIt W/2 - q)x/7] - NI-_W/2 + q)_q]l. (10)

In this figure all spots have a (area × intensity) value of I0.

The response profiles sho_m here run along the horizontal axis

through the center of the squares. It can be seen that the peak

output value is the same for all inputs. This is a general

property of IDS models.

Theorem c,

The peak value of the output to uniform patches of light on

a zero-intensity background is the same for all patches of the

same shape that have the same product (area x intensity).

Proof
For convenience we prove the theorem for square spots, but

the form of the proof applies to any shape. Suppose that l'(x,

I-0.01

_._" ,,

I:A- 10
2".A- 1
3".A- 0.1
4".ll- 0.01

' __

. °

÷i

1=0.1

I I i
j

I=I _ •

I-10

I i I 4 I I I !

Fig. 9. Response profiles for square spots on nonzero backgrounds of various inlensities. The input images were squares of i_lensity I + D
surrounded by background_ of intensity 1. The spot area (A) times its incremental intensity (D) was held cnnslant (D × A = 10l. and r_ponses
were comput.ed for A = 0.01, 0.1, 1, and 10. Upper left, background intensity I = 0.01; upper right, I = 0.1; lower left, I = 1; lower right, I =
lO.
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Fig. 10. |ncrement threshold as a function of test spot area for
background fields of various intensities. The input images were
square spots of area A and intensity ] + D surrounded by uniform
background fields ofintensityL Each curve shows, in log-log coor-
dinates, the value of D required to produce a peak response of 1.15
as A increases over eight log units. Backgrotmd intensities range from
1 = 1000 (top curve) to 1 = 0.001 (bottom curve). The diagonal
straight line represents Riceo's law; each curve follows this line up to
some area value and then departs from it as shown.

y) is a square spot of width W and intensity I on a dark

background, i.e.,/'(x,y) = 1 forlx I _< W/2,1y I <_ W/2; andl'(x,

y) = 0 elsewhere. And suppose that l(x, y) is another square

with intensity el and width W/v_', so that (area × intensity)

is I × W 2 for both. Then l(x, y) = cl'(xx_, YV_), and so
from Theorem 3

O[l(x, y)](p, q) = O(cl'(xv_, Yv_)J(p, q)

= oil'(x, y)](px/7, q_).

Consequently, if the peak output to l'(x, 3') occurs at (p', q'),

the peak output to I(x, y) occurs at (p'/._, q'A, Fc) and has the

same value as the peak output to ]'(x, y).

For nonzero backgrounds, the IDS model implies that

Ricco's law holds as an approximation for smMl spots: Up to

a certain spot size the peak output value remains constant out

to several decimal places (e.g., 3) for all spots (of the same

shape) that have the _ame value of (area × intensity). The

higher the background intensity, the smaller the critical area

beyond which RJcco's law begins to fail.

Figure 9 shows the profiles of the Gaussian-model responses

to square spots of various sizes on various backgrounds. Spot
{area x intensity) was held constant at 10. On the lowest-

intensity background (0.01) the peak-response value remains

constant for areas ranging from 0.01 to 10. When the back-

ground intensity is increased to 0.1 the peak-response value
is still constant for areas up to 1.0 but drops below the constant

value for the largest spot (area = 10). For a background in-
tensity of 1, only the two smallest spots preserve a constant

peak output, and, finally, at the highest background intensity

(10) Ricco's law fails for all but the smallest spot. (At this

background intensity, Ricco's law would hold only for spots
with areas <0.01.)

The equation for the Gaussian-model response to square

spots of intensity I + D on backgr(mnds of intensity I is

T. N. C.rnswee! and J. 1. Yellott, Jr.

O(p, q) = 1 + (IN[AiW/2 -p)} - N]-A(14'/2 + P)]I

× {N[A(W/2 - q) - N[-A t W/2 + qJl)

- ([N[B(W/2 - p)] - N[-B(W/2 + p)}]

x IN[B(W/2 - q)] - N[-B(W/2 + ql]l), (11)

where A = (1 + D) 1/2, B = vT, and W is the spot width.

Figure 10 summarizes the Rieco law behavior of the model.

It shows, for a range of background intensities, the spot in-

_'tensity needed to produce a constant peak response as a

function of spot area. (The spots here were squares, and the

peak-response value at threshold was taken to be 1.15. That

value was chosen for convenience: It is the peak response to

a square of unit area when D = 1 and I = 0.1. The choice of

threshold value is irrelevant here; other values yield curve

families that look like those in Fig. 10.) For all background

levels the constant-response curve runs for some distance

along a line of slope -1, indicating obedience to Flicco's law,

and then departs from this line when the spot area reaches a
critical value. After a brief further decline with further in-

creases in area (Piper's law), the curves increase a bit and then

level out to constant values. For spot areas in that final range
the peak response occurs as a Maeh band at their edges and
is governed by Weber's law.

Increment-Threshold versus Background-lntensity Curves

The last point is made more explicit by Figs. 11 and 12.

Figure 11 replots three of the curves from Fig. 10 in the form

of standard increment-threshold versus background-intensity

(TV1) curves. It can be seen that these TVI curves evolve

through three stages. When backgnmnd intensity is low the

curve is flat, as though threshold were limited by dark fight

(though here there is none). Next there is a transitional stage

in which the TVI curve increases with a slope that is first

somewhat less than one and then somewhat greater. Finally,
when background intensity is sufficiently high, the TVI curve

6"
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Fig. 11. TVI curves for test spots of different areas. These are
replots of data from Fig. 10. Each curve shows the incremental m-

tensity D required to produce a fixed peak-response value whgn the
input is a square spot of area A and intensity / +'D, surrounded by
a background of intensity/. The three curves sho_'n are for A = 0.0]',
A = 1, and A = 100. As background intensity increases, all curves

eventually terminate in a diagonal straight line corresponding to
Weber's law.
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Fig.12. Response profilesat.thresholdforn spolof fixedareaon
backgrounds ofvariousintensil.ies.Each curveshows the profileof
the responsetoa squaretestspotofareaA = 1and intensityI -FD

surroundedby a uniformbackground ofintensityI. The increment
valueD ineachcaseisthatrequiredtoproduce a peak outputvalue
of!.15.Top profile,background intensityI = 0.01:middle,] = I0;
bott<,m,! --)000.

attains a slope of one (Weber's law) and retains it for all higher

backgrounds. The background-intensity values corre-

sponding to lhese three ranges depend on the size of the test

spot: The larger the spot, the sooner its TVI curve begins to
follow Weber's law.

These TVI curves are in good qualitative agreement with

standard psyehophysical results,Ja except thai in the Weber's

law region our curves all run together, whereas in practice one

expects to find a slight])- smaller threshold value of the Weber

fraction for larger test spots.16 This can be underslood in

terms of the fact that larger spots have longer perimeters,

which should increase their relative detectability once the edge

response becomes the dominant factor. We have not sought

t+) model such an effect, since 1o do so realistically would in-

Vo]. 2, N(,. 10/(h'l(dJt+r I!i_,..', ,I {)IJt b(_c. Am A 1779

troduce issues of noi_ and p_ohability sumn_alion beyond the
scope of this paper.

Figure 12 shows how the shape of the threshold-value re-

sponse profile changes as background intensity increases.

The_ profiles ate for a test spot, of atea 1.0. On low-intensity

backgrounds (in the zero-slope portion of the TVI curve) the

response is simply a broad shallow bump, peaking in the

center of the test spot. Here threshold is determined by the

increment intensity required to make this central peak exceed

the threshold criterion. In the nexl background-intensity

range (corresponding to Ihe t ransitional-slope portion of the

TVI curve) the response profile at threshold has a sombrero

shape, with apparent inhibitor, regions surrounding a c_ntral

positive bump. Here threshold is still det_rmined by the

response value at the center of the spot. Finally, on a high-

intensity background, the response profile consists entirely

of Math bands at the edges of the tesl spot, and threshold is

determined by their peak values. Those peaks follow Weber's

law, as was sho_m earlier in Section 3, and this is the Weber
region of the TVI curve.

Shape of the Impulse Response

Figure 13 illustrates, for small spots, a point made earlier for

thin bars: At moderale to high background intensities, the

IDS model produces a sombrero-shPped impulse response

(center-surround antagonism), but when the same spot lies

nn a low-intensity background, the depression of surrounding

activity becomes negligible, and the response appears to be

I- 10ll I=I| I1{n11-0.1

I-O.t in- lliO0 WllPnI-O.I

L i
i !

Fig. 13. Response profiles for a small square spot of fixed incre-
mental intensity (D = 1000) superimp<_ed upon a_igh-intensity (top
curve, 1 = !00) or a low-intensity {bottom curve, 1 -- 0.1 ) background.
Spot width, 0.1.
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purely positive--as though lateral inhibition had failed at low

light levels. Mammalian retinal ganglion cells have been re-

ported to behave in this fa_hion.a, u That fact has generally

been interpreted in terms of a loss of the inhibitory contri-

bution from tile antagonistic-surround portion of" the cell's

receptive field. We see here that the same effect also ;n:curs

naturally in a system involving no inhibition.

The cause uf this apparent loss of lateral inhibition on

low-intensity backgrounds is that when the background level

is low, the width of the point-spread function in the back-

ground region is large, and con._equently the value of the re-

sponse at points near the test spot is the sum of many small

contributions coming from a large portion of the field. The

high-intensity test spot red uces the amount of spread coming

from receptors directly beneath it, but tJ_ese are relatively few,

in number, and consequently their overall point-spread con-

tribution to the respozme at nearby points is negligible lx_ begin

with. Thus, when it is removed, there is only a negligible re-

duction ha the response level. When the background intensity

is high, however, the point-spread function is narrow, and the

response level at points l_ear the test spot is the sum of spread

values contributed by a relatively small number of closely

neighboring points. In this case the loss of the spread values

formerly contributed by points beneath the test spot causes

a substantial reduction in the response level at points adjacent

to that spot. Thus tile same test spot creates appreciable

"lateral inhibition" at nearby points when it is superimposed

upon a high-intensity background and no apparent inhibition
when the background is low.

Configurational Effects

At mJy given backgrotmd intensity, Ricco's area can be defined

as the area of the largest spot for which Ricco's law holds. If

Ricco's law were the result of summation within the central

region of a classical receptive field, one might expecl all targets

smaller than Ricco's area to be equally detectable if they have

the same value of the product (area × intensity). Sakitt

found, however, that Ricco's law is violated within Ricco's area

when the target is a pair of spatially separated spots rather

than a single continuous one) 5 Her experiment showed that

two spots that deliver a fixed total number of quanta within

Ricco's area may be undetectable even though the same

number of quanta are detectable when imaged in the form of

a single spot. Moreover, she showed that her results could not

be reconciled with the idea of spatial summation over a

fixed-size receptive field even if one allows for the possibility

that receptors have different weights depending on their po-
sitions within the field.

For the IDS model these configurational effects pose no

difficulty. It predk:ts what Sakitt found: The peak response

to two spatially separated spots, each of area A and inten-

sity/unit area D, is less than the peak response to one spot of

area A and intensity 2D, even though they lie entirely inside

an area that would yield apparently perfect spatial stunmation

when tested with larger continuous spots. Figure 14 illus-
trates this effect.

The top panel shows the reslnmse profile for a single square

spot of intensity I + D surrounded by a background of in-

tensity I. I here is 0.1, and Fig. 9 shows that at this back-

ground hatensity the width of Ricco's area is 1.0. The spot

whose response.profile is shown here has a width of 0.1, and

its (area × intensity) value is 10. (That is, D is 1000.) The
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peak-response value for this spo! is 1.78. The b-ttom panel

shows the response prtdile for a pair tff square spots, each of

width 0.1, wb_._e edges are separated by a gap of 0.05. The

background intensily is again 1 = 0.1, and each spot has an

intensity D = 500, so the combined (area x hatensily) value

for the two spots is 10. Thus this pair ofspot._ falls well within

the area of perfect spatial summation for this hackground

intensity and have the same total (area × intensity) value as

,-the single spot. ]-lowever, the peak-rt_sponse value Ibr lhe pair
is only 1.55.

This behavior can be understood qualitatively in ! he same

way as the IDS model's creation of Math bands at edges.
Here the single spot's response contains a substantial con-

tribution coming from receptors lying under the background

portion of the input image. The responses to the separated

squares gain a smaller cuntribution from spreading, because

each square has a high intensity and consequently creates a

narrower spread function in the receptors beneath it than they

would produce if the low-intensity background were present.

Thus each square reduces the point spread that its receptors

would have contributed to the output of its neighbor.

The following expression is the output image equation for

the Gaussian case of the IDS model when the input image is

I=0.I D=I_ _=0,I

81 1=|

meem b. a mtm _
_|- IO

I-O.I il-llOOWlOTN-0.1
C--Clli'ne-O.]lb
=.,aim napoms=I.l_
if I- -,0.1;7'i

/

i IxI-li

\

Fig. 14. Configura!ional eflecL_ wit hin Igict.cds area. The t_Jp curve
is the response profile fiJr a single square spt,l with (area × inte,,sity)
= 10. The bottom curve is the response profile fl_r a pair _,f square
spots whose combined (area x illlensity) value was also 10.
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n )),ir (,f _ql_r(,_ (,f h)lensi(y I + D, widlh iV, and center-

renler ._et)eru/ion ,v, _qrrounded 19',:a nnif()rm background of

i))(.ensiIy I. ]t a._ume._ lha( the squme._ tar(, l)_)( h centered on

the x el:is. The (urve in the bat(am ptane] of ]:i_. 14 is 8 plot

of 1.he profile of this out.put function along the/9 axis ('i.e., the

hertz(total axis of the output image).

O[p, q] = I + (tN[A(W/2 - q)] - N[A(- W/2 - q)]]

x IN[A(S/2 + W/2 - p)] - N[A(S/2 - W/2 - p)]l)

+ ([N[A(W/2- q)] - N[A(-W/2- q)]}

x IN[A(-Si2 + W/2 - p)] - N[A(-S/2 - W/2 - P)]I)

- (IN[B(W/2- q)] - NIB(-1V/2- q)]l

x [N[B(S/2 + W/2 - p)] - N[B(S/2 - W/2 - p)]])

- ({NIB(W/2 - q)] - N[B(-W/2 - q)]l

x IN[B(-S/2 + W/2 - p)] - N[B(-S/2 - W/2 - P)]I),

(12)

where A = (I + D)1/2 and B = x/7.

5. DISCUSSION

Intensity-Dependent Spatial Summation as a

PsychophysicaI Model

For a m¢gtel based on a single assumption, the IDS model gives

a surprisingly complete first-approximation description of

human spatial vision for retin01 illuminances ranging from

absolute threshold up to around 10 Td. It predic_ l he two

major effects usually associated with spatial summation: the

dependence of Ricco's area on background luminance and the

fact that visuM acuity increases approximately as the square

root of mean luminance. And, unexpectedly, it also predicts

two major effecLs that are not usually thought of as related to

spatial summation--or, indeed, to each other: Mach hands

and Weher's law. Those two effecL_ are typically explained

in terms of mechanisms quite different from tile one embodied

in the IDS model: lateral inhibition for Mach bands and

nonlinear transduction for Weber's law. Here we examine

the relationship between those familiar concept._ and the IDS

mechanism. We also describe a way in which the IDS model

can be modified to produce a closer fit to psychophysical data

and point out a connection between IDS processing and
brightness constancy.

Mach Bands and Constant.Volume Models

Math hands are generally attributed to a neural process of

lateral inhibition that. can be modeled by convolving the ret-

inal image with a sombrero-shaped point-spread fonction

whose negative brim represents the inhibition) 7 We will refer

tn I his as the standard linear lateral inhibitory (12,I) model.

Within the framework of linear systems theory, lateral inhi-

bi( ion is the only possible exphmation of Math bands, since

Mach bands eorregpond to a high-pass filter effect and in a

shift-invariant linear mode] such an effect can be produced

only hy a point-spread funelion containing negative lobes.

However, we have _en that the IDS model, which is nonlinear,

creates Mach bands with a purely positive point-spread
function.

Thus the IDS model represents a new principle for gener-
ating edge enhancement, namely, edge enhancement will be

produced by any model in which each ohot oroeeptor creates

a point-spread fimction wh_rse w)lume is the same for all input
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intensities. Recall thai (.he fundamental assumption of the

IDS model is that the height .f the receptor output function

varies directly with input intensity but i_ volume remains

constant. As a conseq,Jence, the effect of an image on the

system is not to change its total output but rather to redis-

tribute that output in space. It follows that. when the input
is a uniform field, the output must also be uniform and thai.

output level will I_ the _me regardless of the input level--this
is the intuitive proof that was given for Theorem 1 in Section

2. In other words, the sensitivity of the IDS model to uniform
fields is zero.

Put another way, the IDS model has zero s_,nsitivity at

spatial frequency zero. And by extension it is clear that the

same is true of any model in which the volume under the re-

ceptor out put function remains constant across all input in-

tensities. Furthermore, if the model responds at all, its sen-

sitivity will ri_ from 2_ro aq frequency inere_qes, _ that it will

act like a high-pass filter. And that, in turn, is what is gen-

erally meant by edge enhancement: Low frequencies are

attenuated more than high frequencies, so that in the image

itself large uniform areas are attentuated more than edges. It

follows that all constant-volume models will produce edge
enhancement.

An example of a constant-volume model different from the

IDS model is illustrated in Fig. 15. Here the receptor point-

spread function is the sum of two functions: a Gaussian

whose variance remains constant and whose height is directly
proportional to the input intensity I, added to another

Gaussian whose variance also remains constant but whose

heigh! wries as ('c - 1), so that the total volume under the

spread function (i.e., tile vohtme under the mum of the two

Gaussians) is ahvays eq_ml 1o c regardless of the input inten-

sity 1. 1:_3ecause the volume is constant, this model will at-

temmte low frequencie_ and produce Mach bands. [Note that

if c is positive the composite spread function will be entirely

positive when the input level I is low and then will assume a

sombrero shape at higher input levels, when (e - I) becomes

negative.]

t i
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Fig. 15. Comp.nenl curves fi)r the point-spread function of a con-
sLant-volume model thai differs from la)th the IDS model and the LLI
model. Here ! he pain( spread is (he _tlm of iwo rune( ions, one wh_me

height increases proportionally with the input intensity I [here. a
Gmmsian of I he form I X G l(x, y), whore G) has a fixed sI_mdard de-

viation oil and another whose heighl varies as c - I, where c is a
positive eonstnnl [here, ('c - 1) × G2(x. y), where G_ has fixed stan-
dard deviation 07 and a7 > Oil. Componenl curves for (we values of

/ are shown on the left, and the corresponding composite point-spread
function_ are shown on the right.

lq
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In general, thi_ constant-volume mt_lel is nonlinear since

stJI)erposltion fails: The outpul to a uniform field with in-
tensity 2/(i.e., c) is not twice the output to a field with in-
tensity I (also c). However, when c equals zero the model is
linear--in fact, it is the standard LLI model. Thus that model
fails in the intersection between two distinct classes of model
for edge enhancement: It is simultaneously a constant-col.
ume model and a linear model with negative lobes in its im-

pulse response. Since no linear model can be a const_mt-_
volume model unless the volume under its impulse response
is zero (and consequently tile value of its MTF is zero at the
origin), it follows that the only linear models that can produce
edge enhancement with complete dc suppression are also
constant-volume models.

We see then that the edge-enhancement properties of the
standard LLI model need not necessarily be attributed to
inhibition per se. Instead, they could equally well be s "
follow from the fact that it, like th* trio .... md to
slant-volume model. - -_,z morsel, ls a con-

Weber's Law and a Generalized Intensity-Dependent
Spatial-Summation Model

Weber's law is often attributed to an early nonlinear trans-

formation in the visual system that causes the neural reslx_nse
to an input of intensity ! to be approximately proportional to
log I. This very old idea is not really satisfactory because it

does not explain wily Weber's law fails at low luminances, m_d,
more eriticalJy, even when buttressed with the concept of dark
light, it still cannot explain why the range of background lu-

minances for which Weber's law holds exactly should depend
on the size of the test spot. The IDS model accounts for
Weber's law and its failures on a totally different principle.
Here the height of the receptor response varies linearly with
the input intensity, and Weber's law arises as an edge effect
that is due to spatial summation_an effect that begins to
become significant only at a critical level of' background lu-
minance, which increases as the size of the test spot decreases.

A natural question here is: What specitic feature of the IDS
model causes Weber's law to occur at all?

The answer cannot be the constant-volume assumption per
se, since that assumption is shared by the standard LLI model,
which does not imply W '

eber s law. And for the same reason,
it cannot be the assumption that the height of the receptor

spread function is directly proportional to the input intensity.
In fact, the key to the model's Weber-law behavior is the

constant-shape assumption, i.e., the assumption that the form
of the spread function when the input intensity is I is 1 ×

S(tr'-'), where r is distance from tile receptor. This assump-
tion keeps the volume under the spread function constant by
causing the equivalent area (volume/center height) to vary
inversely with 1. But closer analysis shows that this specific
area-intensity relationship is not necessary for Weber's law.

In fact, if the spread function takes the form 1" × S(]ar2),
where n is any nonzero exponent, and all tile other assump-
tions of the IDS model remain the same, the resulting model
still implies Weber's law, though now the area under the

spread function varies inversely with I - instead of simply I.
Thus the critical feature is really the fact that the model causes

the spread function to change with intensity by rescaling the

x and y coordinates of the retinal plane by factors that exactly
undo the change in its height, thereby leaving its volumeconstant.
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To prove that the generalized II.)S mode/mentioned it, the
last paragraph implies Weber's law. recall that the key

proof that all IDS modeLs imply Weber's law, regardless _f th:
form of the basic spread function (Theorem 4 in Section 3) was
the scaling theorem (Theorem 3). Suppose now that we alter

assumption (3) of Section 2 so that the spread to output point
• (P, q) from input point (x,y) with input intensity l(x,y) is

(3A) If(x, y)!"Zlll(x, y)!'l(x - p)2 + (3' - q):'/I,

where S is an), spread function satisfying assumptions ( l )-(4 )
of Section 2. And suppose that the output image is still the
sum of the spread functitms i.e., assumption (5) now be-comes

(SA_ ob'(x, y)j(p, q) = yf 1](,.,y)/,,

× Sl[l(x,y)]'_[(x - p)2+ _3' - q)2Jld3 dx.

Then Theorem 3 can be generalized as shown below.

Theorem 3.4 {Generalized Scaling Theorem}

For every positive constant c and every input image l(x, y)

OIcl(x, y)J(p, q) = Oll(x/vT", Y/w'c")]

(P'_", qx._"). (13)

Proo_

As in the proof of Theorem 3, we express the right-hand side
of Eq. (13) in terms of the integral ia as_.umption (5A) and
make the change of varia hie u = x/(V_,, ), v = y/(_.'c "). The

result is the left-hand side of Eq. (13) expressed in integralform.

From Theorem 3,4 it is easy to prove that The, were 4 still
holds for this generalized tDS model, i.e., the maximum and
the m/n/mum values of the output on the high and the low
sides of an edge still depend only on the ratio between the

input intensities on the two sides. In other words, the gen-
eralized IDS model in which the point-spread area varies in-

versely with I n still implies Weber's law in the same way asthe original model.

In fact all the theorems proved for the original model still
hold for this generalization, since their proofs in every case
depended only on the scaling theorem. The only difference
is that, wherever the original theorems and proofs mention
the mean luminance level L, one needs t_ substitute L,, in the
general case. Thus Theorem 5, which showed that visual
acuity increases as x/7., can I,e inmmd'i,ttely generalized to
show that acuity in this model increases as x/LL,,. As noted

in Section 3, n values less than 1.0 are more in line with psy-
chophysical acuity measurements (e.g., n -- 0.75 for the data
of SchlaerT). This is also true of measurements of the size of
Ricco's area as a function of backgrot,nd lumimmce: Bar-
]ow's 2 results obtained at 6.5-deg eccentricity require a n of
the order of 0.2, and the t'oveal data of Glezera are fitted by n= 0.5.

Discounting the Illuminant: Weber's Lag- and Brightness
Constancy

Most objects in natural scenes emit no light of their own but
simply reflect light from the sun or some artificial source.
Normally the reflectances of objects remain constant over

time, but their illumination may vary by factors as large as
101°, so t he irradiance of their optical images can vary by the
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same factor. After lDS processing the peak and lrough am_
p]itudes of the Mach bands at edges depend only on the ratio

between the input image intensities on the two sides {Fig. 3).

This ratio depends only on the reflectances of an object and

il_ background and is independent of scene illumination. The

shapes and the positions of these peaks and troughs, however,

depend on the abso|ut.e input intensities and thus on illumi-

nation: Both become narrower and move closer to the edge

itself as illumination increases. For any object-background

combination, then, there is some illumination level beyond

which the Math bands generated on opposite sides of the

object no longer overlap one another. At this level and all

higher ones, the output image of the object consists of an

edge-enhanced [)order whose peak and trough amplitudes

depend on the reflectance ratio across its edges and whose

interior has the baseline output value (1.0 for the II)S opera-

tars defined in Section 2). Of course this critical illumination

level is lower the larger the object. Assuming that an object

can be detected when the peak of its edge response differs

from the baseline response value by more than some criterion

amount, it follows thai in an IDS system the detectability of

an), object will follow Weber's law once the illumination level
gets high enough.

If the apparent brightness of an object is unaffected by its

illumination and depends only on its reflectance and that of

its background, as is roughly true in hmnan vision, one speaks

of brightness constancy. In the human visual system, the

apparent brightness of the interiors of large objectsof uniform

luminance must be based on an extrapolation from their

edges, since the retinal images of the interiors are effectively

stabilized images and consequently cannot contribute to their

visibility. Is If an extrapolation mechanism based its as-

signment of interior brightnesses on the peak and trough

values of the Mach bands at the edges of objects and received

its input from an IDS operator, it too would exhibit brightness
constancy for all objects beyond a certain size.

Intensity-Dependent Spatial Summation as an

Image-Processing Algorithm

Intensity-dependent spatial summation seems potentially

useful as a first-stage image-processing operation for appli-

cations involving the same type of boundary conditions faced

by the retina--applications in which the inputs are Poisson

noisy images whose mean intensity levels [(quanta/pixe])/frame]
can vary suhstantiaily from scene to scene (e.g., because

of changes in illumination) and also within a single image (e.g.,

because of shadow.c). These conditions occur naturally for

television pictures of real scenes illuminated by the sun.

Automatic Gain Control

The illumination falling upon natural scenes can va_: over the

course of a day by as much as 10 zo. No recording medium can

readily accommodate such an enormous dynamic range.
There are two fimdamenta) objections to the usual solutions

to this problem, such as the use of filters or amplifier gain

changes. First, the), are insensitive to loyal variations in scene

illumination, e.g., owing to shadows: The effective luminance

of the entire scene is reduced by a common factor, which can

reduce the signal level in shadowed areas down into the range
of the system noise. This is symptomatic of the second

objection, which is more genera]. Spatial contra_! detection

is in principle limited 1)5' photon noise at all illuminati(m
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levels; contrast sensitivity can always be in'proved by in-

creasing the quantum catch. Thus an)' gain-control mecha-

nism that simply _nforces a fixed quantum catch, as the use

of an iris or a filter does, is Imund to become increasingly in-
efficient as the illumination level rises.

The IDS mechanism automatically compresses all input

intensities into a output range extending from zero up to

around twice the value of the constant point-spread volume

(i.e., 0-2 when that volume is taken to be 1.0, as it was arbi-

,_ trarily in the IDS mode/of Section 23 In doing this it makes

efficient use of ever 3- photon: As the image plane illuminance

increases, the extra photons serve to decrease the size of the

spatial-summation area, improving spatial resolution while

maintaining a fixed reliability of contrast detection. And this

effect occurs locally within a single image, so that in every

regmn tt)e size of the summation area is matched to the illu-

mination falling upon objects in that portion of the scene.

Noise Smoothing and High-Frequency Atlenuation

In noise smoothing by local averaging, the size of the sum-

mation area is usually held constant throughout any single

image. The effect is simply low-pass linear filtering. This

is a sensible way of suppressing photon noise, provided that

the mean intensity level is known in advance @o that the

summation area can be set inversely pre.portional to it) and

that there is not much variation around the mean level within

any single image. If the last condition cannot be guaranteed,

either summation over a fixed area loses potentially re_olvable

high frequencies in the high-intensity regions of the image

(because the summation area is too large for the mean lumi-

nance level in those regions), nr else the low-intensity parts

of the image become needlessly noisy (becau,_e the summation

area is toe small for the mean luminance level there), or both

effects occur at once in different parts of the image.

The IDS operation, on the other hand, acts like a spatial

filter whose high-frequency cutoff is always adjusted to match

the prevailing light level (Fig. 7). In effect, it selects for at-

tenuation the spatial frequencies that are so high. relative to

the mean quantum catch/pixel, that they could not be. reliably

discriminated from photon noise. Thus the mean luminance

level does not have to be known in advance, because the/DS

mechanism adjusts to it automaticalJy. And since this proce._

occurs locally, different paris of the same image can have

different mean intensity levels without requiring the mech-

anism to compromise on a single high-frequency cutoff. In-

stead, each region's cutoff frequency is automatically matched

to its local mean intensity level. Thus. if the input ig an image

of a natural scene illuminated by the sun and some parts of

the scene are in shadow, all parts of the output image will si-

multaneously tend to contain the maximum amount of

high-frequency information justified by timir local mean lu-
minance levels.

Edge Enhancement

Edge enhancement is usually accomplished by convolving the

input image with a more or leas sombrero-shal_l point-spread

function consisting of a positive central region and a negative

surround. For Poisson noisy optical images, this bandpass-
filtering operation has no eft:ect on the signal-to-noise ratio:

If the input image takes the form I × r_x, y), where I is scene
illumination and r(x, y) is the refleciance distribution over

a scene, after convolution the mean lz_ standard deviation ratio

m
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at each tx}int is still proportional l_ x/_. If the volume of the

point-spread function is zero, as it usually is, uniform regions

in the input image at aoy intensity 1 are converted into

bandpass-filtered Gaussi,.n noise with mean zero and variance

I at every point. This noise is the background against which

objects must be detected. For any value ofl, the size of the

sombrero must be adjusted to ensure an adequate signal-

to-noise ratio at the Math bands produced at edges, since

those are the only places where most objects will be visible.

In general, the critical size varies inversely with 1, and, if the

filter is poorly matched to the actual value ofl in a given scene,

the result will be either a needless loss of high-frequency in-

formation (when the sombrero is wider than necessary) or

edges that cannot be discriminated from noise (when the

sombrero is too small). If I varies greatly within a scene, the

filter cannot be appropriate for all regions simultaneously, and

one defect or the other is inevitable, just as with linear noise-
smoothing filters.

An IDS operator acts like a handpass filter whose frequency

range automatically changes to match the prevailing mean-

luminance level, both from scene to scene and also locally

within scenes. Consequently, the parameter of an IDS filter

(i.e., the width of its point-spread function) needs to be ad-

justed only for a single luminanc_ level, and the filter will then

adapt to all other levels (up to its saturation point), main-

raining essentially the same size edge response at all levels for

constant-contrast edges (because of the Weber-law property
discussed above) and increasing spatial resolution as scene

illumination increases. It can be shown that, for the Gaussian

case, the IDS response to Poisson noisy uniform fields has a

constant mean and variance for all values of I >_ 0.01. Con-

sequently, the background noise against which objects are

detected does not increase with scene illumination, and the

detectability of edges (and thus of large targets) should remain

constant as illumination increases, while resolution im-
proves.

6. SUMMARY

We have analyzed a nonlinear model of retinal image pro-

cessing, the IDS model, based on a single assumption: The
height of the point-spread function varies directly with illu-

minance, whereas its volume remains constant, so that the

area under the spread function around each photoreceptor is

inversely proportional to the illuminance at that receptor.

This assumption allows reliable spatial contrast discrimina-

tion in the face of photon noise while simultaneously maxi-

mizing spatial resolution. It proves to have the following
conseq u en ces:

(1) Bandpass Filtering. The input image is effectively

bandpass filtered, producing Mach bands at edges and an

apparent center-surround antagonism in the response to small

spots. In general, the model mimics effects normally attrib-

uted to lateral inhibition. This mimicry includes the fact that

the appearance of lateral-inhibitory effects depends on illu-

mination: At low background intensity levels, responses to

small test spots exhibit no noticeable surround antagonism.

(2) Ricco's Law. For spatially continuous targets smaller

than a critical size, the peak response value depends only on

the product of/.arget area times intensity. Thus detection

of such targets should obey Ricco's law. The size of the crit-

T. N. ('-rz_._weel and d. 1. Yeliott, Jr.

ical area (thai is, the size of Ricco's area) varies inversely with
the background illuminance.

(3) Configuratitmal t'iolations o/ Ricco's Law. Within

Ricco's area (that is, the area of appareut perfect spatial

summation as determined wit h spatially continuous targets),

Ricco's law fails for noncontinuous targets: A single spot

produces a larger peak response than two separated spots that

have the same combined area × intensity product.

" (4) Del'-'-G MTF. The response to low-contrast sinus-

oidal gratings closely approximates a sinusoid, allowing one

to define a MTF. For the Gaussian case of the ID_q model, the

MTF at any fixed mean luminance level has the same form

implied by a LLI model based on the negative l,aplacian of
a Gaussian.

(5) Visual Acuity Improves with Illumination. The

MrFF varies with illuminance in such a way that any high-

frequency cutoff increases as the square root of the mean lu-

minance level (for the simplest version of the model). This

implies that visual acuity should vary in the same way.

(6) Weber's Law Succeeds or Fails Depending on Target

Size and Background Intensity. The response to edges

separating large uniform fields obeys Weber's law: The peak

and trough values of the Mach bands at edges depend only on

the ratio between the input image intensities on the two sides

of the edge. When a target of fLxed size is superimposed upon

background fields of increasing intensity, its response profile

evolves through three stages: first a simple bump, then a

sombrero, and, finally, a pair of Mach bands at both edges with

a baseline-response level between. The smaller the target is,

the higher is the background level required Ix) reach this final

stage. Once it is reached, the detectability of the target

satisfies Weber's law for all higher background luminance

levels. In general, the model implies threshold versus back-

ground intensity curves whose shapes closely resemble those
found in psychophysical experiments.

(7) Brightness Cort_tarwy. Assunfing that the brightness

of a target depends on the size of its edge respom e, the Weber

property implies that sufficiently large targets will exhibit

brightness constancy; i.e., their brightnesses will be inde-

pendent of the scene illumination and depend instead only

on their reflectances relative to that of the background.

APPENDIX A: DERIVATION OF THE

RESPONSE TO LOW-CONTRAST SINUSOIDAL
GRATINGS

We derive here the approximation given in Eq. (7). Suppose

that the input is a vertical sinusoidal grating of the h)rm l(x)

1 + k cos 27r/x. q hen from Eq. (4) the output protile along
the horizontal axis is exactly

O pl= f_" I(1+k

X exp[(-l/2)(1 + k cos 2rr/x)(x - p)2]dx.

For arbitrary values ofk this integral seems quite intractable.

However, when k is small enough that k -_can be treated as

zero, it can be solved as follows. First, write 1 -f k cos 2rr[x
as

[1 + (k/2)cos 2rr/xj e - (k e/4)C.,C: 2rr,/a

Dropping the second term, we have



T N (:orn_weet , n d ,_ 1. _l¢-lhqt, dr.

(1 + h cos 2r/.r) _ 1 + (k/2) cos 2rfx,

and substituting this al)pr,ximatio n inl_ the output equation
yields

O(p)-_ f_ I(1 + J c<'._2_-l*)/v'TL27-7_)i

X expl(-1/2)(x - p)2]

X exp[(-j)(cos 2r[x)(x - p)2idx '

where j = k/2 and the factor exp[(-1/2)(k/2)2(x - p)2

cos 2 2r[x] has been set equal to one. Expanding the second

exponential factor as a Taylor series and dropping the terms

containing powers ofj greater than one, we have

o(,i f] +;cos

× ext,[(-I/2)(x - p)2] × ll -j(x - p)2cos 2rrixidx

: - ;f] I l,'C l(x cos2.f 

× expl(-l/2)(x - p):']dx

+J f_] lV,'C2"-  eos2,,/xe,<pl(-|12)(x-p) ldx

_ j2 f_: Iil,,_l(- - v)2eos 2,rf:r

× explf-l/2l(x - pF'idx.

Dropping the last term (which is less than j2) and making the

change of variable v = x - p, we obtain

O(p)- 1-j __[ "-":'="--' 2[l/v (2rJ]v cos 2r[(v + pi

x expl(-l/2)o-_ldt, + j f: 11/,,'T2-_-7]

× cos27r/w + p) expl(-ll2)v._idv,

which can be solved exactly. Expanding the cosine factors

ini_ (cos 2rr/v)(eos 27rip) - (sin 2_r/v)(sin 2r/p) and noting

that the integrals involving sine factors all vanish, we have

O(p)_-I - j cos 2.in f_] II/, (z/i-_,)1_

X cos 2r/v expl(-1/2)vCJdv

+ j cos 2r/p _: l|/,,_=-2-_.)icos2-h, expr(-l/2)t,:idv.

The third term call be olilained from integral tables: It. works

out toj cos 2trip exp(-27r_/e). To evaluaie the second term

we note that. the int.efzral is the Fourier transform of

I i/,/i_-2r-Tlv:' expl(-'/Dt,-'l, which i_ ll - (2r/i_iexp(-2r-"F).

The entire second term then is -j cos 2rill times that ex-

pression. Comhining all three terms and replacing j with k/2,
we have finally

O(p) _ 1 + [27r2f 2 expf-27r2/=')ik cos 2r/p,

which is Eq. (7).
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APPENDIX A

IDS Cylindrical Kernel Response to a Step Edge

Since much of the analysis is predicated upon evaluation of

the IDS response to an ideal step edge, we include here a short

derivation of the basic properties of the cylindrical kernel IDS

step edge response.

The IDS response O at a point (p,q) in an output image is the

sum of each of the point spread functions (psf) h at (p,q). By

point spread function (kernel), we mean the response of the system

to input of magnitude I at a sample point (x,y) in the input image.

That is

00

I
The psf's are defined to be surfaces which encompass a

constant volume V above the xy image plane. Without loss of

generality we take this volume to be one. The psf is also assumed

to have radial symmetry. For implementation of the psf it is

useful to restrict it to a finite extent, so that the sum can be

calculated "exactly" in a reasonable time. That is the sum

includes only those psfs that lie with a radius r, here r 2= (x-p) 2

+ (y_q)2. The simplest psf is then a cylinder (right circular)

perpendicular to the xy plane of radius r and height i, ie. h(x,y;

p,q,I) = h(r2,I). We further define the psf such that the height

1 is proportional to the intensity i.e. 1 = KI. Thus, V = 1

= _r2KI so that the psf is simply,

h(r2,I) = KI { 1 O<r<_
0 elsewhere



Recall the circ function is defined as

(r) = _ 1 0<r<l0 r>l

so that the integral can be wrltten

O(Ptq)_ S I KI (MF y) _ (r _-KI) dxdy

We now invoke the essential one dimensionality of the original

image i.e. I(x,y) = I(x). Without loss of generality we will

consider a step edge along the x direction, then

The limits on the inner integral collapse to ± y, where the kernel

is nonzero. Then by expressing y = y(x,p,q,I) over the kernel we

have

Ip÷

O(p)=2 KI (x) _K x)

Vp. I__!__

(x-p) 2dx

where we have lost the dependency on q in the ohtput image.

To procede further we must now be explicit about the image.

Specifically consider a Step function at the x axis origin.

_I o x<OI(X) = Io+_I x>O



substituting

_I p÷rO
(p) = 2 _r02 _o

p-r0

i p+rA
(x-p) 2 dx + 2 _ra2 (x-p) 2

_r62

p-rA

dx

where r 0 = (_KI0) "I/2 is the radius of the kernel to the left

of the origin and ra = (_K(I 0 + AI)) "I/2 is the smaller kernel

to the right of the origin. It is useful to partition the x

axis into the segments corresponding to the different limits

of integration as shown in the Figure below

I o

RI

--ro -r A r A r o

Io+ 41

RI

Figure A-I. Limits of Integration

A-3



Over the regions the integrals are:

R_!l fpJ > r 0

o(p) = z

R2 r_ < Ipl < r 0

0

O(p) = _r_I _r02 - (x-p)

p'r0

2
dx + H(p)

R3 Ipl < r_

0

O (p) xr0Z

p'r0

P+rt_
(Xlp)2 dx + 2 _r_ 2 (x-p)2

_r2

0

Where H is the Heaviside function

_I x>0H(x) = 0 x<0

These integrals evaluate to

R_! Ipl> r0

O(p) = 1

R_/2 ra < Ipl< r 0

R3

O (p) = ½

Ipl< r_

= -
+,iI_l_-I_l_- i sin.1 Ir_l

By substituting r0 and r_ one can immediately

obtain the expressions for the output as a function of the

original step edge intensities. A more succinct form can be

obtained by defining an angle @ = sin'1(p/r) to give

dx



RI JPl > r0

o (p) = ].

R2 ra < Ipf < r 0

1 1
O(p) = _ - _-_ [_0 + sin@0] + H(p)

R_/3 Ipl < r_

1

O(p) = 1 - _-_ [ (_0 + sin@0) - (@_ + sin@ a) ]

The above functions and their first derivative are

continuous across the region boundaries.

The extrema can be formed by finding 80(p)/Sp = 0

from either the integral or the explicit forms above.

Differentiating the output expression over region 3 gives

their location p' on the p axis as

p'= _+ r0r6

r02 + R_ 2

substituting for r 0 and r_ gives the form

P' = +[_KI 0 (_+2)]'I/2

which should be compared with expression (7a) in Alter-

Gartenberg I.

At this value of p we can find the peak value directly

from the output expression in region 3. The three equivalent

expressions are

O(p') = 1 + 1 sin'1 t2--/-_Fl+_112 _ _I sin.1 [2-_-_]-1 .I12

= 1 + 1 sin-1 C ro _ i_ F sin.1 Ira 1r02 + ra2 r0 z + r62

1 , 3 _ 1 ,
= _ + 1 ¢_ = 2 _ ¢0

where _ = AI/I 0 is the Weber fraction or contrast at the

step edge. The first form is (7j) in Alter-Gartenberg I. The

minimum is then O(-p') = 2 - O(p'). At infinite contrast the

extrema are 1/2 and 3/2.
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1.1 Introduction

Given the IDS output, we would like to be able to reconstruct the input. Actually, we

don't want to recreate the input itself, but a' version of the input that has ratios of

reflectances instead of intensities. Currently, Odetics is using an algorithm that goes

through the output line-by-line, finds peaks and troughs, decodes the ratio of the step

in intensities that is presumed to cause the peak and trough, and reconstructs the step

as a ratio of reflectances. This method is a heuristic one. WTe can more or less tell

from experience that this should work for certain images and under certain conditions.

However, there is no mathematical proof or formal analysis of the algorithm, its benefits

and drawbacks.

In this report, I will present four different approaches to IDS reconstruction. I haven't

succeeded in solving the actual problem itself. However, I feel these techniques provide

insight into the problem and may serve as trailheads to those who wish to continue on

the path of reconstruction.

Figure 1.1 shows a one-dimensional slice of a two-:dimensional step input. It also
[. .

shows a slice of the IDS output. The output has odd symmetry about the point (0, 1).

Figure 1.1: Step input and IDS response
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The peak height depends only on the ratio of the intensities on the two sides. If the

input is due to a step in reflectances that is lit by a uniform illumination, the ratio of

intensities will be independent of the actual illumination.

The output crosses one right where the intensity jump in the input is. The distance

of the peak from the one crossing depends on the actual intensities themselves. If the

intensities in the input are both multiplied by a constant greater than one, the peak

height will remain the same but the peak will move closer to the origin.

The IDS response to a step illustrates a fundamental idea behind reconstruction

processes. This idea is that we want to lose some of the information that is in the IDS

• "i

output. To reconstruct the step as a ratio of intensities we only need to know three

things -- where to put the jump, what the ratio of the two sides is and which side is

higher. We put the jump right where the one-crossing in the output is. We decode the

ratio of the reflectances of the two sides from the peak height. We make the high side of

the reconstruction the same as the side of the IDS output that has the peak.

Notice that we didn't use the information contained in the distance of the peak from

the One-crossing. This makes sense because this information tells us the absolute values

of the intensities in the input and that is precisely what we want to ignore.

The approaches that I illustrate below all attempt to reconstruct intensities instead of

ratios. This comes about because the mathematical results that are available are stated

in terms of the output for a given input and not as.the output for ratios within the given

input. In fact, it is impossible to always be able to reconstruct the input from the output.

A simple example of this is an input thai is a uniform field. Regardless of the intensity

of the input, the output is always a uniform field whose value is one. Therefore, given

an output that is one everywhere, we can't tell what the particular intensity of the input,



was. However, if we relax the restriction of exact reconstruction to that of finding the

ratio of all points to any one point, we can easily say that this ratio is one.

Because these approaches attempt an exact reconstruction, we already know that they

will fail. My motivation for demonstrating these techniques is not to actually make the

exact reconstruction, but to provide models and ideas for methods that can be modified

to reconstruct an image of ratios of reflectances. I hope that someone will be able to do

this.

1.2 An important approximation
I

Before I demonstrate the approaches to reconstruction_ I'd like to derive and explain an

important approximation that I'll use as a bridge between the continuous IDS that is

used to derived mathematical results and the discrete IDS that is used on the computer

for image processing. It is this:

Approximation: The value of the discrete-IDS spread function at (z, y) from the input

! intensity I at the pizel at (p, q) is approzimately equal to the continuous-IDS output

at (z,y) f_om a square at (p,q) that is the size of the pizel at (p,q) and is uniformly

covered by an intensity I.

Let the square centered at (p,q) have sides of length 2A, with 2A being one pixel

width. The continuous-IDS output at (z, y) from'the square at. (p, q) is given by

/-_ i_ I(p,q)S {I(p,q) [(x -p): + (y- q,:]} dpdq.

Since I(p, q) is constant over the square, we can write the output as

f__f__!S{I[(x-P)2+(y-q):]} dpdq.

3



Now assume that the square is small enough so that the spread function is approximately

constant over the square. (In practice, the spread functions in the discrete version of IDS

are constructed so that this assumption is true,) Since the spread function is constant,

it can be factored out of the integral to yield

The integral is just the area of the square. If we choose the unit of length to be one pixel

width, this area will be equal to one. The output becomes

which is the discrete IDS output at (x, y) from the pixel at (p, q).

We'll use this equivalence throughout the report. In particular, note that the discrete

IDS input can be considered to be a continuous input made up of little squares of uniform

intensity. Since many of the results in the rest of this report, depend on the input

consisting of only regions of uniform intensity, this approximation will prove to be quite

valuable. :'

1.3 Orthogonality

The first approach to reconstruction uses orthogonal functions.- As an example of the

concept of orthogonality, suppose the function f(x) is periodic. It can be expanded in a

Fourier series, namely

= a,e (1.1)

where



i is an integer

a_ is the Fourier coefficient

j is

a is the fundamental spatial frequency.

To find al, we multiply both sides of Equation 1.1 by e-ak_ (k is some integer) and

integrate over one period T (= 2__).

ff/(_)e -'_°_ d_

= _ f0re'(_-k)°'a, d_
im---O0

(1.2)

The key to the procedure of orthogonality is that the integral on the right side is given

by

T for i = k
fo T e 3( i-k )a= dx (1.3)

0 otherwise.

Suppose two functions (such as e _x and e -_k=x) are multiplied together and integrated

[

over s0m¢ range. If the result is a constant when the parameters in each function are

equal (i = k) but zero otherwise, the functions are orthogonal.

To continue the derivation of a,, insert. Equation 1.3 into Equation 1.2 to get

fo f(x)e-3kc'z dx = ai
i=-oo 0

= Ta_

for i = k-

otherwise

or

f(z)¢ -_k_xdz.

5



The technique which I will now outline is only applicable to inputs that just contain

regions of uniform intensity. Each region nmst have positive 1 area, but the area can be

infinite. By the approximation in Section 1.2,"all discrete inputs on the computer can

be treated as continuous inputs with only regions of uniform intensity. In [2, page 71,

Theorem 2.6], I showed that for this type of input the output O(z, y) is given by

N

O(z,y) = _I,S{I,(z _ + y2)}. u_,(x,y) (1.4)
i---1

where

N>I is the number of regions of distinct intensities

is the region containing intensity Ii

is the convolution operator

and u_,(x, y), called an indicator function, is given by

= / 1 for e

( 0 otherwise.

Under this notation, the input I(z, y) can be written as

N

i=l

We want to find u_,(z,y) for all values of i. Since I_ goes with u_,(z,y), we can then

reconstruct the input. To find u_(z,y), we will use a more general version of orthog-

onality in which <> is an unknown operation that replaces integration and Q(I_, z,y)

is a set of orthogonal functions. "We will require Q(Ik, x,y) to be "orthogonal ''_ to the

1Throughout this report, "positive" means "greater than zero".

'I put in quotation marks because the nonzero response in Equation 1.5 is a function, not a constant

as tile definition of orthogonality stales.



function I_S{h(x 2 + y:)}. u_k(x,y ) under the operation <> so that

<Q(Ik'x'Y)'IiS{Ii(x2+Y2)}*u_'(x'YO> = I u_,(x,y) fori=k (1.5)0 otherwise.

We reconstruct the input by finding one region u_(x, y) at a time. To do this, apply

the operator to both sides of Equation t.4 to get

< Q(h,x,y),O(x,y) >
N

< Q(±_,=,v),_ z,s{i,(_2+ v2)}, _,(_,v) >
i=l

Assume that <> can be moved inside the summation sign. This gives

< Q(Ik,z,y),O(x,y) >

N

< Q(Z_,_,y),±,s{±,(_=+ y=)}
i=l

which through the use of Equation 1.5 reduces to

or

f

< Q(±k,_,v),O(_,v) >
= { u_,(x,y) fori=k0 otherwise

_,,,(_,v) = < Q(h,_,v),o(_,v) >. (1.6)

In image processing there are only a finite number of intensities Ik. We can use Equa-

tion 1.6 to go through the output and find the region in the input that corresponds to

each intensity.

As all example, suppose that the operator <> is the convolution operator • and the

function Q(h, x, y) is such thai,

= ,(_(x,y) fori=k0 otherwise

7



Then starting with Equation 1.4, weget,

0(_, v) =

Q(Ik,z,y) , O(x,y)

=
i=l

N

i=1 ._

N

i=l

N

Q(.Ik,z,y) • I,S {I,(z: + y2)}, u_,(x,y)
i=l

N

= _(_,u) *u,,,(_,y).

Since the convolution of a delta function with a second function is the second function

itself, the above equation becomes

u_,(_,u) = Q(Xk,_,u),0(_,u),

which is what we were looking for.

Of course, the trick is to find an operator <> and a set of functions Q(I_, z, y) that will

make this technique work. Moreover, even if we found these items, this method would still

have,to be modified to produce ratios of reflectances al{d not an exact reconstruction.

1.4 Algebraic reconstruction

Each point in the IDS output is the sum of spread functions from-numerous input points.

Given a group of such sums, can we deduce the constituent input values? I will now study

this idea, which I call algebraic reconstruction.

Figure 1.2 is a very simple example. The input contains only two pixels. Let X(Y)

be the value at pixel Y of the spread function centered at pixel X. In Figure 1.2, Aa(A2)

is the value at the right pixel of the spread function from the left pixel.

8



A1 A 2 -

Figure 1.2: Input of two pixels

There are four unknowns in this problem-- AI(A1),AI(A2),A2(A1),A:(A2). We are

given O(A1) and O(A2), the outputs at the two pixels. Each output is the sum of the

spread function centered above it and the spread function from the other pixel. Thus we

get two equations,

O(A1) = AI(A_) + A2(A_)

O(A2) = A_(A2) + A2(A2) (1.7)

But we also know that the volume under the spread function is one. This means that

the sum of all the values of any spread function must be one. This gives us another two

equations,

!..

1 = AI(A_) + A_(A2)

1 = A2(A_) +A2(A_) (1.s)

We now have four equations in four unknowns. Unfortunately, the equations aren't

independent. We can see this by noting that the right side of the sum of the first two

equations is the same as the right side of the sum of the second two equations. Thus

there are more unknowns than (independent) equations.

We're also operating under other restrictions. The spread functions are non-negative

9



and the center heights are positive? This leads to the four restrictions

Aa(A1) > 0

AI(A2) _ 0

A2(Aa) _> 0

A2('A2) > O.

To fully understand the problem in this example, we would have to study the solutions

to equations 1.7 and 1.8 under the above four restrictions.

When there are more than two input pixels (there usually are[), the situation is the

same. Suppose the input is an nxn array of pixels. There are n 2 input points and n 2

output points. Since each output is a sum of the spread functions from the inputs, there

are n: equations similar to those in Equation 1.7. Since each of the spread functions from

the n 2 inputs must sum to one, there will be n 2 more equations like Equation 1.8. This

gives a total of 2n 2 equations. However, as before, the sum of the two sets of equations is

the same, so there are really 2n: - 1 independent equations. Each of the center heights
f

mustbe positive and the other values of the spread function must be non-negative.

On the computer, all spread functions are set to zero past a certain distance. Call

this maximum distance from the center r. There are approximately zrr 2 values for each

spread function. This can be reduced to about a 2_Trr different values by symmetry argu-

ments. Thus each image contains about 1 __:_zrr ,_ unknowns, but only 2n: 1 independent

equations. In general, there are. always more unknowns than independent equations,

and so there is no unique solution to the problem. Nevertheless, I think that algebraic

3This latter restriction comes about because the center height is proportional (with a positive constant

of proportionality) to the intensity, and intensifies in IDS are defined to be positive.

10



-r.

(Xe)

Figure 1.3: CAT scan

reconstruction needs to be investigated further for two reasons.

The first is that the technique attempts to reconstruct the values of the inputs ex-

actly. As I explained in Section 1.1, we really want to find the ratios of reflectances. This

involves a loss of information. It would be good to exanfine the solutions to the underde-

termined equations that occur in algebraic reconstruction. What kind of information is

lost in these equations? Is the loss such that the solution involves ratios of reflectances?

The second reason to further pursue algebraic reconstruction is that it may be similar

to th_ techniques used in computer-aided tomography (CAT). Figure 1.3 shows the idea

of CAT scans. There is a two-dimensional object which partially absorbs x-rays. The

absorption varies throughout the object and is given (in polar coordinates) by #(r, 8).

During a scan, a beam of x-rays passes through the object at a particular angle. The input

intensity of the beam is known and the output intensity is measured. If this procedure

is repeated at many different angles, the absorption can be accurately approximated at

all points (r, 6).

For a given angle 8, the relationship between the input intensity I of the beam and

11



the output intensity 0(0) is

o(0) =

where the integral is along the path of the beam. Loosely speaking, even though the

output always depends on a sum (integral) of the values we're trying to reconstruct

(#(r, 0) for various r and 0), we can still deternxine the absorption at each individual

point (r, 8).

The situation in IDS is similar, though not exactly the same. Each output depends

on a sum of functions of the object we're trying to reconstruct. The differences between

IDS and CAT scans are that in IDS the sum is over two dimensions (a neighboring area)

instead of one dimension and the input is unknown. However, the concepts are sinfilar

and it would be worthwhile to pursue the analogy further.

1.5 Geometry at corners

The previous approaches to reconstruction involve algebraic techniques. Another tack
!.. .

towards solving the problem is to look at the geometry of the output. By graphing

the output as a height above the zy-plane, we get a three-dimensional landscape. As

I explained in Section 1.1, there are geometrical features in the output that relate to

geometrical features in the input. For example, in the step response, the output crosses

one right where the jump in the input occurs. A geometrical approach to reconstruction

would be to go through the output and look for one-crossings, peaks, valleys and other

such figures and reconstruct the input from information in these figures. This idea has

been used by people at NASA and is similar to the one currently being tested at Odetics.

A big problem with the geometrical approach is that it is hard to reconstruct the

12



Figure 1.4: Bisector at a corner

input at spots where there is a lot of det/_il, such as the vertex where polygons meet. (I'll

discuss the specific nature of the problem in the next section.) In this section, I'd like to

propose some mathematical results which may help determine corners more accurately.

In [2, page 110, Theorem 2.8], I showed that, under fairly general conditions, the

output at the vertices of polygons is exactly one. I propose here that the local extrema

(maxima or minima) occur along the bisector of the vertex angle. (In Figure 1.4, the

dashed line is the bisector.) This proposition should be investigated and proven or

disproven. For the rest of this section, I will assume that it is true.

These two properties of vertices could be used to pinpoint the intersection of two

edges. Suppose that we have detected two edge segments, have calculated the formulas

of th_ lines going through them and that we know that t_ese lines intersect. Should these

segments be extended to their intersection point to form a corner?

One supporting piece of evidence would be a pixel at the intersection whose value

is one. In the continuous version of IDS, the point right at the intersection would be

exactly one. Because IDS is discrete on the computer, we would"check the pixels close

to the calculated intersection (probably the nearest four pixels) 1.o see if one of them

is approximately one. If it were One, we would have more confidence in extending the

segments.

We could also calculate the bisector of the angle formed by the two intersecting lines

13
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and check on the bisector and near the intersection for a local extremum. If we found

an extremum, we would feel even more confident in constructing the corner. Moreover,

it. might turn out that the distance of the eX'tremum to the intersection may provide

information about the intensities around the corner. If Odetics is going to pursue a

geometric form of reconstruction, it would be worthwhile to have someone investigate

this proposition on the extrema and the bisector.

1.6 One-dimensional response

Figure 1.1 is the IDS response to a step input. To reconstruct a step of ratios, we could

find the one-crossing, determine the ratio of the two sides from the peak height, and

create a step whose two sides are in the desired ratio and whose jump occurs right at the

one crossing.

Now imagine that. to the right of the step in the input there is another step. If the two

steps are far enough apart, the output will just be two step responses that are separated

by a!'.large distance. However, if the steps are close to each other, the output changes.

The trough from the output to the step on the right merges with the peak from the

output to the step on the left and decreases its height. If we were to calculate the ratio

of the two sides of the step on the left, the answer would not be correct because the

peak height would be smaller than it should be. If the step on the right were a step

down in intensity, the left. side of its output would be a peak. If the two steps were close

enough, the two peaks would merge and the peak in the output of the left. step would be

higher than it should be. The ratio of reflectances calculated from this peak would not

be correct. We call this change in output heights due to steps that are too close together

14
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Figure 1.5: One-dimensional input

the interference effect.

In this section, I will state, prove and discuss a theorem about the IDS response to

certain one-dimensional patterns. I haven't found the result to be helpful in actually

leading to a reconstruction of the IDS input. Rather, it illuminates and quantifies the

problem of interference in IDS reconstruction.

The theorem holds only for one-dimensional patterns and for inputs that consist

solely of regions of uniform intensity. On the computer, this latter restriction is not

ilnportant because of the approximation in Section 1.2. However, the former restriction

is quite severe. Although patterns will in general not be one-dimensional, this theorem

illustrates the problems with reconstruction in the simplest case. Interference only gets

wors_ i n two dimensions. ::

Actually, the theorem may have some immediate practical use. The current technique

for reconstruction at Odetics involves only one-dimensional scans of the output. Thus as

far as that method is valid, the theorem may also be vahd and applicable.

Theorem 1 Suppose the input varies only in one dimension and is composed solely of

regions of uniform intensity. Let there be N regions and thus N - 1 jumps or changes in

intensity. Then the IDS output O(x) to the input is given by

N-1

= 1t + i (1.9)
i=I

15
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SECTION 1

OPERATION

1.1. FEATURES

The XC-77;77CE is a monochrome video camera module

whic,"l uses a solid state image sensor -- ;he CC_
(Charge Coupled Device).

High qua'lity Image

High quality, fine image is made Possible Dy a lar'_e
number of picture elements, as muc_ as 768x493 for
XC.77 and 753x581 for XC-77CE.

The XC.77CE's picture elements are equally arrayed in

verlical anti horizontal _lrections, anti allow easy acl.

dressing. ,-his makes XC-77CE most suitable for Image
processing systems which require highly accurate ao-
Cressing.

Adaptability 1o diversified signal processing

Gain can _e internally selected either the AGC (Auto.
_atic Gain Control) or Fixed. anti the T (gamma) can _e

set either to the compensation moOe or to the fixeo (1)
mode.

_'_.e accumulation mode of the electrical charge can _e

internally changed from the frame accumulation to the
field accumuiation. This enables the non-interlace mode

sensitivity to be elevated up to the equivalent level to the

sensitivity of :he interlace moOe _y entering signals into
the external sync input for the setting of the non-
interlace mode.

Internalsyn¢ signal output

Clock signals are COnstantly output. ,_O si_;_al an0 f;eld
index signal can De output to t_e :2P :onnec:c,r _y aJ:er.
Ing the Internal wiring.

Solid body

The hotly consists of aluminum C_ecast ancf s:eel s_eet.
On the bottom are 2 screw holes (reference holes) wn,cn

can _e use_ to keep Ceviation of :he op_icaJ axis a! aminimum.

Compatibility with XC.37 series

×C-77/77CE has common types of VIDEO OUT connec:or

and 12-pin multi-connector pin assignment with zhe
XC-37 series, as well as having identical crcsq see:ion

external climensions, ano can replace the XC-37 series
camera module.

Long life and high stability

Precise image geometry

Three types of external sync signals

Synchronization with other cameras is possible by
entering the three types of signals from the external

sync signal generator. The capture range is set as wide
as :1% of the horizontal frequency.

HD, VD signals: external synchronization IS applied in
accordance with the system, either the interlace or

non-interlace system, which iS automatically Iden-
tified by the HD, VD signals.

VBS (Video, Burst, Syn¢) signal: the camera mo<:lule Is

synchronized with the VBS signal (BB signal or com.

posite sync signal.) (The sync system, whether by
HDND signal or VBS signal, Is automatically selected
OepenOing on the input signal.)

Reset pulse: this iS used to set the timing for the read.

out of register contents at an arbitrary moment.

Low lag and little image sticking

High resistance to vibration anO mechanical shock

Quick start-up

Shooting in a strong magnetic field

Low power consumption (2..2W')

1-t{FJ



1-2. COMPOSITION

The CCD video camera modu/e system consists of the

fOllOwing optional ;roCuc:s whict_ can ._e purchased

separately.

Camera cables

CCXC-12P02 (2m)

CCXC.12P05 (Sm)

CCXC.12P10 (10m)

CCXC.t2P25 (25m)

.!
XC.77/77CE CCD video

camera module ,,:B.77 }uncIIon box

, VCT-37 ttllX>d attachment

VCL-16Y-M stanclard lens PC-XC12 12-pin cc,nnector

• t:o. ".% -

+

PC-XC04 4.pin connector

XC-77/77CE CCD video camera module

VCL-16Y.M standard tens

This is a standard lens of f : 16 am, F1.4. The iris and
focus are adjusted manually.

JB.77 Junction boa

This is attach_:l to the camera trKx:lule using the CCXC-

12P02J12P05/12P10/12P25 camera cable and will supply
power, transmit vi_eo signals, and exchange external
syn¢ signal=.

PC.XC04 4.pin ¢onnecto¢
This is used to attach the lens cord of the auto iris lens

to the LENS connector on the XC,-77/77CE video camera
module.

PC.XC12 12-pin connector

This connector is prepared for system-up, and usecl Io
connect to the DC INISYNC connector of the camera
module.

VCT.37 tripod attachment
To attach the video camera module to a tripoO, use this

tripod attachment.

CCXC-12P02 (2m), 12P05 (Sin), 12P10 (10m) and 12P25

(2Sin} camera cables
These cables cln be attached to the 12.pin DC INISYNC
connector on the rear of the camera module Io supply

power, transmit video signals and exchange syn¢
signals.

1-2(E)



ODC INISYNC (PC power inpul/sync) connector (12.pin)
Connect a CCXC-12PC2, CCXC-12P05, CCXC-12P10 or

CCXC-12P25 camera cable to this connector to supply

power (12 V DIS) from an external power source and out.

put me video signal from the video camera module. When

a sync signal generator is connected Io supply the sync

szgnal _VBS, VS, BS or HD/VD), the camera m_dule can be
operated on external sync signals.

The pin configuration of this connector is shown in the

diagram below.

i SignalPin NO.

External Sync mood

HD, VO I vBS/VS RESTART RESET !

L. 1 Ground I G,ound Ground i Ground
2 +12V I _-12V +12V I +12V

Video output Video output Video output Video output

3 (ground) (ground) (ground) (ground)

Video output Video output Video output ViCed output

4 (signal) (signs;) (signal) {signal)
HD Oulput

5 -- (ground)

6

7

8

10

HO Input

(ground)

HD Input

(signal)

VD Input

(signal)

I

Ground

+12V11

VD input
12

(ground)

VBS Input

(signal)

Ground)

+12V

VBS input

(ground)

HD Input

(ground)

Camera Sync

OUtput

HD Input HD output"

(signal) (signal)

RESET PULSE FIELD INDEX"

(signal) Output (signal)

CLOCK output

-- fground)

RESET PULSE

(ground)

CLOCK output

(signal)

Ground

+12V

FIELD INDEX

output (ground)

"11 Is neceIIl_ tO mo, dlfy ¢onne.cilon$ of the citcudS =n s_(_! lha

Cll1"Lltl in order to oulpul thl HO anO FIELD iNDEX s,gnaH,.

_) VIDEO OUT (output) connector (BNC connector)

The video signal from the video camera moOule is output
from this connector. This connector can be used only

when a CCXC-12P02 camera cable is connected to the
DC INISYNC connector and the video output of the 12-pin

connector of the CCXC.12P02 cable is not terminated

wilh 75 ohms.

1-4(E)
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1-3-3. JB-77 JUNCTION BOX

Front

CAMERA connectod

0 Pilot Lamp

L_ghts up when 12 V DC is input.

O CAMERA connector (12-pin)
Connect a CCXC-12PO2,/12PO_12PI0 or CCXC-12P25

camera cable to this connector to supply power (12 V PC)

from an external power source anCl external sync signats
from an external sync system ancl input the vic_eo signal
from the video camera module.

,J VIDEO OUT (output) connector (BNC connector)
The v,Oeo signal from the viCeo camera module is output
from this connector when connecteO tO a video mondor
or VTR etc.

0 CLOCK OUT {internal syn¢ signal output) connector

Clock signal is output through this conneczor for the in-
OepenOent use of tt_ecamera mo<:lule.

0 VD IN connector (BNC connector)

Connect the sync signal generator to ;nout :he VD s:_r.al
or the VRS signal. This enaDles the camera moCuie :o :e

operated on external synC sigr.als.
•When receiving VD slgnals, input _D stgnals to !_e _.:)
connector.

• When receiving VBS signals, _o not Input HC si;_a:s ',o
the HD connector.

For the inOependent use of the camera mocluie, the fie_c_

index signal (FLD, VO or composite sync signal) can :e

output by changing the camera's internal wiring.

O HD IN connector

Connect the sync signal generator to input the HD signal.
Combining It with the VD signal input from VD IN c3r,nec.

tot enables the camera moclule to be operateC on ex'.er-

nal sync signals.
For the independent use of the camera moclule, :t_e _D
signal can be output Dy changing the cameras referral

w,ring.

I-6(E}



1"4.

1-4.1.

CONNECTIONS

WHEN JUNCTION BOX IS USED

J

XC 77/77CE CCD

video camera module

VCL-16Y M

.!

DC IN/SYNC

Image processor,
monitor or V TR

O O ¸
i

75-ohm coaxial cable

HO signal

VD or VBS signal
75-ohm coaxial cable

CCXC-12PO2.112POSI12P l O/12P25

J camera cable

f_'_ JB.77 Junction box

traL ®7o"
._-hL[@.=4_J_,ooo,.,,_

"_ __" I !+'- connec'or

DC 12 V Dower source

f

When applying extem-I lync by VBS o1' V8 signal, the

image may be affected by VI_ signal during gen lOCk if a
long type CCXC cable I$ used (especially CCXC.12P25).

When Ibis ocoute use only BS or an S signals.

1-8(E)



1-5. INITIALIZATION OF THE MODE 1-6. PRECAUTIONS

't"-"

_, °4,

Modes for the following 8 items can be switched. At the

time of deliver, each item is set to the upper mote in the
list shown below.

Ilem I Mode Remar k'L _'¢

FIX GAIN Gain fix
AGC

AGC Au|omatic gain control

1 NO T compensation

T compensate r compensation

SUB1 Frame accumulation in use

SUB2 Field accumulation in useSUB

EIAJCCIR

I =nAME/

I EIA ROM (EIA mode)CCIR ROM (CCIR mode)

RESTART

RESET
I

FRAME

FIELD

Frame accumulation
i

.:IELD Field accumulation

NORMAL Normal scanning

FRAME INVERSION Inversion of even numt:>er
field and odd number field

OFF Frame not synchronizing

ON Frame synchronizing

EIA SG (EIA mode)
EtAJCCIR

CCtR I SG (CCIR mode)

Note
EIA/CCIR mode settings vary depending on the CCD

(EIA/CCIR).

P owe(" source

Operales on 12 V DC. Use a stable power source, free

from ripples or noise.

Foreign objects
Do not spill any Itquid, drop any Inflammable or metal c:-

jects inside. This could result in tire, electrtficatio_,
malfunction or acciclent.

Do not wrap in cloth while in operation

Locations for operation and storage
Avoid operating or storing In the following places.
•An extremely hot or cold location.

Operating temperature: 0°C to 40=C (32=F to 104=_
• A location exposed to high humidity or dust.
• A location exposed to rain.

• A location subjected to strong vibrations.
• A location near a "IV or radio station which rac!ia:es

high powered radio frequencies.

Care
Clean the dust on the surface of the lens and optical
filter with a blower. C;ean the exterior with a self, cry

cloth. If It becomes very dirty, clean with a cloth slign::y
moistened with a mild detergent solution. Do not use any

type of solvent, such as alcohol or benzine, wnict_ may

damage the finish

1. I O(E)



2"1, SPECIFICATIONS

SECTION 2

COMPREHENSIVE SPECIFICATIONS
o .

<CAMERA MODULE XC-77>

Pickup Device

Picture eiements

Sensing area

Optical black

Ve_ical afire frequency

Horizontal Clrwe frequency

S;gnal system

Structure

Cell size

Chip size

O_tical System

Lens mount

Frange back length

Sync System

External sync input

External sync frequency tolerance

Jh'.er

Locking time when power is on.

Scanning System

ViCed Output

Horizontal Resolution

Vertical Effective lines

Sensitivity

57o

Interfine transfer CCD

768 (H) x 493 (V)

8.8 mm x 6.5 mm

(ths same as._ha 2/3-inch caners tubal
22 ;_ixels each horizontal I;nl

15.734 kHz

9.545 MHZ

EIA stanCard

Interline transfer

17 _m {HI x 13 _m (V}

10.0 mm (H) x.3.3 mm (V]

C mount

17.526 mm

Internal/External autmatic change

VES, VS. ES

(SYNC LEVEL 0.3 Vp-p = 6 cfB)

=1%

Within = 100 n sac

Within i0 sec

2 : 1 Interface : 525 lines

1.0 Vp-p sync negative, 75 ohms

unbalanceS.

TV lines

2 : 1 Interlace : 485 lines

t-O0 Luxes with F4 {},ONIodB)

Minimum Illumination

SIN ratio

Power ReQuirement

Power ;qcttage Tolerance

Power Consumption

Weight

Camera module

Tripod attachment

Camera cable

Junction box

Storage Temperature

Operating Temperature

Shock resistance

Storage Humidity

Operating Humidity

(2 ml

{5 ml

(10 m)

(25 m)

3 Luxes. F1.4

(without an infrared cut filter)

50 ¢B

DC 12v

0CI0.5v_, 15v

2.2W

190 g {XC-77)

15 g (VCT-37)

130 g (CCXC-12P02)

2.05 g (CCXC-12P05)

560 g iCCXC-12PlO)

1.4 Kg (CCXC-12P25)

170 g (lB.77)

-30*C "_ -_60eC

OoC _, 40=C

7O G

Within 90%

Within 70%

<STANDARD LENS VCL-16Y:M>

Focal Length

Maximum Aperture Ratio

Iris Control

Filter Thread

Mount

We;ght

16 mm

1:1.4

FI.4 _, F16

M 25.5 mmx P 0.5 mm

C mount

50 g

=

<

=
w

_=

?%

xC.77 (uCl 2-1
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2-2. CONNECTORS' PIN FUNCTION

12-P MulI_connec'or (External viewl

PlrJ

"0.

I

EXTERNAL SYNC MODE

_40. vD VBS/VS 1 OUTPUT

ONO GND GNO GNO

2 *12 V +12V _12 V _12 V

VIDEO VIDEO VIDEO VIDEO

3 OUTPUT OUTPUT OUTPUT OUTPUT

fGNDI IGNO] {GNDI (GNO]

'.qC_EO vIDEO VIDEO vIDEO

4 OUTPUT OUTPUT OUTPUT OUTPUT

_SIGN_L} {SIGNAL] tSIGNAL] ISIGNAU

.... ' HC) _NPUT HD INPUT HD OUTPUT

5 _GND1 _ IGNDI IGND|

i )_D INPUT I PID INPUT H{_ OUTPUTro _StGNAL] _ (SIGNAL) (SIGNAL]

9

'0

12

I vO INPUT
? (SIGNAL]

veS INPUT RESET PULSE

(SIGNALI {SIGNAL]

CAMERA

;SYNCRONOUS

I

--I--
GNO i GNO

-12 V 1 4-12 V

VO INPUT VOS INPUT

IGNOI IGNOI

FIELD INDEX

OUTPUT

ISIGNAL}

CLOCK

OUTPUT

{GND|

CLOCK

OUTPUT

[SIGNALI

__ GNO

1 +1-, vRESET PULSE FIELD INDEX

(GNOI I OUTPUT(GNDI

4P Lens Connector (External view}

I PIN NO. I SIGNAL I SPECIFICATION1 I ÷12 VOUT I DC 12VOUTPUT

t 2 I GND I GND

NC I NC

VS OUT ! VIDEO SIGNAL OUTPUT
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2-4. External Synchronization

There are three external synchronization motes"

I. VStVBS mode

2. HE) and VD mode

3. RESTART RESET mode

2.4-1. VSIVBS mode

The VS/VBS mode provides external synchronization by

Supplying a normal composite signal. VS or VBS. to pin 7

of the 12-Din connector.

2.4-2. HD and VD mode

The HD and VD mode provides external synchronization by

SUlDplying an HD signal to p,n 6 ancl a VD signal to pin 7 of

t/he I 2-_)_n connector.

• Input conditions of HO and VD signals

• Fre(_uency [period)

HOt 15.734 kHZ =1% (63.56/_s "_%]

VD: 244 to 1023 1/2 H

" The maximum number of vertical effective lines is 486

in the interlace mode.

In the non-interlace mode, it is 242 for both the ODD

field and the EVEN field.

• Phase

MO

vO _.___
i

f,ild i

Ill11 ,_ _411

vO
EvEN
f,il(I

'i'_1'_,$ :lk_p! i

liilll ill _iil

The figure in parentheses ( ] indicates the number of clock pulses

As shown in the illustration above• the ODD field is provid-

ed when the phase shift between the trailing edge of the

VD signal and the trailing edge of the HD signal is between

a lead of 16.2 /_s and a lag of 16.5/as. The EVEN field is

provided when the phase shift between the trailing e_ge of

the VID signal and the point 1/2H from the trailing edge of

the HO signal iS between a lead of 15.2 /_s and a lag of

16 5_s.

• Interlace and noninterlace

Operation can be performed in e,ther inter!ace :r -:-.

interlace mode by changing the inpt.rt con_,tion cf :_e , S
signal. See Figure 1.

• Interlace

To o0erate in the interlace mode, set :he period of ,.,he '/3

signal to (A + 1/21H. A is an integer. 244 to 1037. In o:_e,

words, the phase of the leading edge of the VO signs_

against the leading edge of the HD signal is changeC f:r

each VD signal. The field changes from ODD to EVEN ar _,

_o ODD, rel0eataclly during operation in the interlace mace

At this time, the number of scanning lines per frame is _.A

+1.

• Non-interlace.

To operate in the non-interlace mode. set :he oeriod of t'_e

VD signal to A H. A is an integer, 244 :o 1037. In o:_er

words, the phase of the leading edge of :he vD signal

against the leading edge of the HE) signal ;s not c_.an_ec

for each VD signal, and the field ODD or EVEN remains un-

changed fat operation in the non-interlace mode. T_e

number of scanning lines is A; this is half of the number of

scanning lines for operation inthe interlace mace. The sen-

sitivity is half of the sensitivity provided in the interlace

mode. when the frame is stated.

2-8 xC.;7 tuc;
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2-5. Mode Setting

The xC.77 can sw,tcn the c;eration mode. depending on
the use.

The modes are set c,n :De PR-89. SG-119. and k_3-138
boards.

PR-89 board

Item Mode SHORT OPEN

AGO AGC ;iX
AGC

WHITE CLIP

;!x GAIN FIX

rl

'COMPENSATE! z2

i r ! rl

'WHITE CLIPt r2

; FRAME 1 SUB 1

AGO

_2

rl

_2

;1

SUB
; FIELD ! SUB 2 SUB 1

SG-119 board

Item I Mo<:e M't OPEN

i EIA R 7 R 6EtA/CCtR

SUB 2

FRAME/FIELD

FIELD

RESTART RESET

EIA/CCIR

ICCIR

NORMAL

INVERSION

NORMAL

RESET

EIA

CCIR

R 6

R 1

R 2

R23

R28

R24

R29

R27

R22

R 7

R 2

R 1

R28

R23

R29

R24

R22

R27

• The value o| all resistors is 10 kQ.

MB-136 board

Item Mode M't OPEN

NORMALI R3SRESTART RESET
, RESET _ R35

"The value of resistors R35 is 220 kQ.

When it is set to FIX GAIN, a fixed gain is obtamed.

The settlngis performed with the AGC :race on :_e PC _

board. To set the gain to AGC. connect the AGC end arc

clJsconnect the FIX end. To set the gain to FtX GAIN. :3:-.

nect the FIX end. To set the gain to FIX GAIN, canned: :-e

FIX end and disconnect the AGC end.

The factory setting is FIX GAIN.

• Gamma coml_ensetion moc!e (1/COMPENSAT/CNI

Eel the gemml correction of /he video outout s;gnal "v

:his mode. When the gamma is set to COMPENSATE.

video signals for which gamma correction is _erformec a,e

cutout. When it is set to 1, no gsmr,',,s correction is _.er-

formed for video signals. This setting _.roviCes w"eo

signals proportionet to the emount cf light from t,",e oD;ec:.

The setting is performed with the gamma and while co:

traces on the PR-89 board. To set COMPENSATE. connect

the gamma 2 end, s of both gamma end white clio traces.

and disconnect the gamma 1 ends. To set 1. connect :re

gamma 1 ends of both gamma and white cfip patterns, an:

disconnect the gamma 2 end.

The factory setting is 1.

• EIA/CCIR mode (EIA/CCIR)

Set the signal system of the video output signal wi_.h :_:s

mode.

Always set the signal system to E]A.

• Storage mode (FRAME/FIELD}

Set the period in which I aignll charge is read from :h.e

photolensor in the COO with this mode.

VVhen it is set tO FIELD. | signal charge is read for each

field. When it is set to FRAME. a signal charge is read for

each frame. Note that if the FRAME mode is set for ocera-

:ion in the non-interlace mode, the sensitivity is half of t_e

sensitivity provided in the interlace mode.

The letting is performed with the SUB trace on the PR-__.9

board and FRAME/FIELD trace on the SG-1 lg board.

To set the period to FIELD, connect the SUB1 end of the

SUB pattern, and disconnect the SU82 end. Mount then

R1 (10 kQI on the FRAME/FIELD trace, and demount _2.

To set the ,period to FRAME. connect the SUB2 end. an_

disconnect the SUB1 end. Mount then R2 (10 k_) on the

FRAME/FIELD trace end demount R1.

The factory setting is FRAME.

* Explanation of all Operation modes

• VIDEO GAIN eddie (AGC/FIX GAINI

Set the ga=n of the v,deo outout s=gnal with this mode.

When _t iS set to AGC. the automatic gain control
functions.

2-16 xC.;;v:.:
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2-6. THEORY OF OPERATION

<Operation principle of the CCD>

.f
A CC_ IC,_arge Coupled Device) consiszs of MOS'qMetal.

Ox_ce-Sem_concluctor| capacztors arranged in a regular

array.

it basically performs Ihree func',ions connected with

hanclling c.'_erges.

1, Photoelec:r,c COnversion (photosensorl

Incident light generates charges on the MOS Cal:3acilots,

with :he c_antsty of charge being proportional to :he

-'_rigntne as.

2. Accumulation of charges

When | vii:age is applied to the electroClee of the MCS

capacitors, an electric potential well is formed in tl-,e

sJliCon layer. The charge is eccumuiezed in this well.

3. Transmission of charge

When a n;gn voltage is eoplied to the elec:todes, a Casper

well iS formeO, when I low voltage is applied, a shallower

well is formed, In the CL-"_. thia property is usedto

transmit the C_lrgl. Wh•n • high voltage Jl applied to the

electro_eI, s _eep electric potential well is formed, and

charge flaws in from neighboring well. When this ill

repeeted over and over among the regularly arranged elec-

trocles, the charge is transferred from ones MQS capacitor

to another. This is the principle of CCD charge
transmission.

<Mechanism of CCD charge transfer>

I. Vertical transfer

The ve_ic•l shift register transfers charges using • four*

phase drive mode. Figure 1 shows an example of the

changes which can occur in potential wells in successive

time intervals.

At tO. the electrode vOItlgel Ire (V1 m V2I > (V3 - V4L

sO the potential wells ate deeper toward the electrode st

the higher voltages V1 and V2. Charges Iccumulete in

these deed wells. At tl, the electrode voltiges Ire (Vl =

V2 == V3) > (V4). so the charges accumulate in the wells

toward the electrode at Vl, V2 and V3. At t2, the elec-

trode volt•gel •re (V2 = V3l > (V4 = Vl). so the charges

accumulate in the wells toward the electrode •t V2 and
V3.

Electrode voltage states at t3 end after ere shown below.

t3 IV2 = V3 - V4)> (Vl)

_4 IV3 = V4) >(Vl - V2)

t5 IV4)>(Vl ,= V2 == V3)

t6 iV4 = Vl)> (V2 ,, V3!

t7(V4 = Vl= V2)>(v3)

%8 {Vl" = V2) > (v3 == v4l (Initial state)

These operation,= are repeated to execute the vertical
transfer.

vt

v2

v]

vq

,0

t!

_2

_3

14

,S

le

,7

,S

T : :

i •

v_

v4

..... .//..y//_ .......... 7,_---- _ ....... ,...//._jl_

I I I I I tVl
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<SH-27 board>

:t contams a sample anO hold cirCu,t, CC_) putout s,gnals

sent from :he AI. 1 2 board are d,v,oe0 ;nip two Bo[n s,gnals

are sampled and held by a sam_ling and holOJng Pulses

,SHP. S_). One s_gnal ,s sampiecl an0 held three tlr=w_esby

these _ulses. ,n oraer of Ir,e SliP. SHE) and SHP pulses.

The other s,gnal ,s sampled and held lwo times by the SHO

guise anr_ :hen SHP pulse. The clilference of Ihese two

s,gnal removes a nmse component of CC:) out:)ut s,gnsl to

obtam the v,Ceo s,gnaf, using a C_fferential am_,hf:er con-

s_stmg of Q 16 through Q I g. The v,Cleo s_gnai from the OJf-

'e,enhal amphfier is sent to the PR.89 board.

<PR-89 board>

It contains a wOeo s_gnal processing CirCuit. which con-

verts the wc_eo signal from the SH-27 board into a woeo

s_gnal of EIA standard. The video signal from :he SH-27

board is fed to IC1. IC1 contains an auto-iris cJrcult and s

gain control amphfier for AGC. The s_gnai from the gain

control amplifier passes through a low-pass filter FL I and

_s then fecl to tO2. In IC2. venous signal processings such

as c_amp_ng, gamma correctzon, while clipping, bian=;ing

m_zing, setup attrition, and sync sagnal mux:ng are ex.

soured. The resultant signal is then Passed through an out-

put drJve? C:rcu,t ccnsJst_ng of O1 :hrougn C8 ant sent

horn this board,

<CN-163 boa,d>

It connects the MB-138 board with each external connec.

tot. I 2-pin multiconnector (DC I'NISYNC connectorl, 4.Din

connector (LENS connector) and BNC connector (VIE)EO

OUT connector) are mounted on this board. At 12-pin

multiconnector, +12 V power voltage, external syn-

chronizing signals tEXT HE). EXT VD. RESET PULSE. VBS

and VS) are input and the video signal (VS) and syn-

chron_znng signals (CLOCK. HE). FIELD INE)EX) are output.

12-pin multiconnecIor I/O signals varies sccording tO

selection of sync moqe(internel sync or external sync

moclel. Refer to Section 2-2 in details.._12 V power supply

anq video signal for autO-iris lens ire output from 4-pin

connector. The video signal (VS) is output from the BNC

connector.

<RG- 18 boa,d;>

It supphes a E)C voltage to be applied to CCD driving clock

generator and CCO substrata.

<M8.136 board>

It contains an external synchronizing signal Cetection c!r-

cu:t, 1820 fh oscillator, DO-to-DO converter and CC3 c,v-

ing clock ge_erator. When external synchronizing s_gna:s

are supplied :o this board. :he Camera automatically

selects external sync mode and Outputs a viced s,gnal syn-

chronized with '`be external synchronizing s_gnal. For ex-

ternal synchronizing. EXT VD and EXT HD. or EXT SY_C.

or EXT HD and _ESET PULSE can be used. When EXT :-_D

and EXT VD. or EXT HD and RESET PULSE are suopwie¢.

the MB-136 boa,d wave-shapes these signals using ._ I.

02. 03 and IC7 and outputs them '`othe SG-119 bcarC.

When EXT SYNC of VBS or VS ;s supplied, tn_s bca,_"

detects only s sync comoonent using O2. C3 ant It';. ar,:

wave-shapes it. The resultant SYNC signal is ou:_ut :o :._e
SG-119 board.

1820 fh oscillator ,,= subdivided into two, which are for ex-

ternal and internal synchronizing. In the internal sync

mode, the oscillator using a crystal oscillator (XI)

operates. In the external sync mode. the vol'`age Contro!!e:

oscillator VCO which is an LC oscillator ogers'`es. The VCO

can van/ oscillation frequency within =1%. A control

voltage of VCO are supplied between O V anti.5 V. When

the Control voltage is 2.8 V, the oscillation frequency ;s set

to be 28.6363 MHz (- 1820 fh).

The clock signal of 1820 fh is fed to ',he CC_ _riving c!cc_

generator. The E)C-to-E)C converter :onver'`s :he

externally-supplled DC (+12 V) into four DC vona;es:

+15 V, +10 V. "7 V. and +5 V. These voltages ate leo to
each board.

CCD driving clock generator generates :he clock signal

necessary to drive the CCD. When the HE) and VD s_gnals

from the SG-119 board and the clock signal of "_A20 ,'h

from the 1820 fh oscillator are fed to IC1.

It outputs the following signals.

CLOCK: The clock signal of 910 fh lhalf the CloCk signal

of 1820 fh)

HI, H2: Two-phase clock signal

These are used to drive the horizontal sniff

register and to transfer the signal charges.

Vl tO V4: Four-phase clock signal

These are used to drive the vertical shdt

r_gister and to transfer the signal c._arges.

PG: Precharge gate control pulse

A precherge gate is the gate of the OutOut sec-

tion connected to the horizontal rag,star. Th_s

gate is controlled by this pulse to conve,I a

transferred signal cha,ge into the voltage.

SHP. SHOo These pulses are used to sample the CCD out-

put signal.

CLPI: This guise is used to clamp the oohcal black

level of the CCD output signal.

CCE) driving clock signals H1, H2. V1 to V4. and PG are

output to the CCE) after passing through the <_,ve C_rCu,t

consisting of IC3. IC5 and IC6.
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PREPARATION

I: Jigs and measuring ins_t'urnents

SECTION 3

ALIGNMENT

[If :he _e_ern _ox ;s unavai]a=le] •

• lO0-W bulb

• Variable voltage _ransformer

<

=
=
E

• White window chat'[

,M,axe a hole in black :.aDer as shown

in the figure.

' -i t
' 0 '-E F

Vert,¢|l _,:_:C " 4.5:1:4.S

_O_aZOnlll _:E;F - 4.S:1 4. r_

xC.77 (uc) 3-1



Step2: Connectiond;agram

IConnect;.on method 1]

z

÷ 12v

WtRtNG SiDE

Round connector plug

IF) 12P

3-2 xC77 fuC_



3-2. OVERALL ADJUSTMENT

Step 1: V SUB (/ieldl adjustment

• Cauhon

DO nol make th,s adjuslmenI exce'_t when :_,e CC_) is _eplaced.

• S e:!,ng

/! ',_easurJP, g mSlrument Dig,lal voltn;eler

• :}'e_araI_on

SocCer Daft A and remove the sOlder from part B as shown in the figure.

II
PR-Bg BOARD(Componenl Sicle|

* Ac'iustmenl procedure

1. Test Point; TP3 (GND:TP1]/PR.Bg board
Adj. Point: O RVIO/PR-ag board

S_ec.: When using a new CCD. adjust the V SUB

voltage so that the sDecificatlon written in
the back of the CCD is satisfied.

@

PR-_J) 80,AJ_O (Ccm_,m Smel

wNa
TPI •

Rv7 0_O

D30

D40 ,

osO.

010

o?0

olOi

090_

i
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Step 3: Coupling noise elimination adjustment

• Setting

Ler.s JfiS

_',,_e asuring instrument

C!ose _I with the le_s cad

Oscdlosco_e
Trigger

TP4(NDIIMB.136 boarci

• AdlUSt.'nenI procec_ure

.L,,,

i

..:

_.o--T.g

..-7=_

Test PoinI/PR-89 boarcl I Adj. Point I Spec.

TP2(GND:TPll OCV1/SH-27 board I A shall be minimi..-ed.

A

,.,LL>o I"'0 __":,,.

L_ J o_o

IC2 oso

TP2 : ¢O

• Rv$ _,v1 o;o

,_G: • ' =F-i@ :@P-Y--h -.o
iN.--,,.. "°: _,, :'°
lU_ "_;@@,,,,, o_.__
_T_'3 Rv_O

PR- 8!F BoARo ICo,,,,a_wnu S,_e I

I1
,,t. Pl_-Sg boefd

®

r
oo*o

0

0

X SG-119 bo,,,,,
\

TP4(HO]IMB-37 bOlfd

3.6 C-_
xC.77 14



t

• .Adjuslrr_en{ proceOure

r__J

;----=

Test Point AOj. Point _' Spec.

J

FIx L_._AGC

Q@:o.,_
L?"

_C2

_Z RV9 DV_

@TP3 ---_wo

_,4Q

@
Rv3

QV8

TPl (_

Q ..,

O,_ 0

0|0

:gO

PR- 8!) BOAA'0 IC_'Tmm',,,_,l $_e I



Step 6: GAIN adiustment

• Set:,ng

Cbject

• Preparation

Graysca;e chart Measuring

instrumenl
Oscilloscope and wave.

form monitor

z

III
o

PR-89 BOARO(Com1>onen! Sichl)

• Adjustment procedure

I. Lens iris _ Close it with the lens cad

2. Test point: VIDEO OUT terminal

Adj. Point: ORV11/PR89 board

S_ec.: A,, 7.0 -_. 0.5 IRE

3. Shoot the grayscale chart, and place the camera

so that the char1 frame louches the underscanned

p_cture frame on the monitor screen.

FI x {_.._JA GC

LO;_

r TP2
• Rvl) _mv1_

r--l_ OtO : Rv,i

_v,Q

@
RV3

G

RV8
TPl •

o,o"
¢tV7 DZO;

030 '

040 ,

050.

010

010

_,10:

o,o:
o,o0 :

PR.8g BOARD (Comoonent SlOe|

Monilo_ lore ell

IIIIII!11I1
I lllliltjl]

IContinuecl to next _age)

3-10 xC 77 (UC]



Step 7: AGC adjustment

• Selling

• Preparation

Measuring

inslrumenI

L__
PR-89 BOARC)lComc:bonen! S;del

" ACFlUStment procedure

1. Shoot the grayecale chart, and place the camera

so that Ihe Dicture frame of the chart tOuchee the

uncierscannecl picture frame on lhe monitor screen.

2. Test Point: TP2 IGNO:TPlIIPR.89 board

Trigger: TP4(HD)/MB-136 board

Adj. Point- Lens iris

S_ec.: A=350 .,. 10mY

Moni10r IcTee_

3. Test Point: VIDEO OUT terminal

Adj. Point: ORV8/PR-89 board

Spec: B=100 == 5t_E

r Jx L__AGC

' ,'dl 3

T_'3 RVIO _*'V

D_C,

RV$ 0ZO

.'9C

r

,J

3-12 ,_C. T7 IuCl
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Step 9: Gamma adiustmenl

• Seltimg

I ODjec_

!
C,rayscale charl Oscilloscope ancl wave.

form monitor

• Preparation

I. Solaer _ar',s B ancl D anCl remove the soIc_er from Darts A and C as shown in the figure.

A B

2. SetORV61PR.89 on the PR-89 board to the mechanical center.

|Front view| [Too viewl

F* x L_.._AG¢ R'vaQ

_c;,

L?':

I(_2RVI Qv$

TP3 RVIO

Q o;'o
RV7 020

0}0

040

o*oi!

070:

0110,

n_. eS BOARO (C=.,,-o='wNwSin* I

7 (Continued to next page)
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Step I0: White c/;p adiustment 2

• Setting

rObject
i

Grayscale charl

• ACIustmenI procedure

Measuring

instrument

L

Waveform monitor (WFM) i

1. Shoot the grayscale chart, and :/ace the camera

so Ihal the chart frame touches the unCerscanned

_tczure frame on the monmtor screen.

2. Test Po,nt: VIDEO OUT term;hal

_c_ 1. Point: O RVB/PR-89 board

_d/ustmenI: Open the lens iris and adjust sothat

the VIDEO OUT waveform clips at

1IS ,,- 2tRE .

MOnm[Or screen

rf X L._AGC

_'G;,

' C|3
L..,

'rp2

@ Rv9 I_'vS

E]@ @d- -i

_)TPS _0

_v,Q

@
Rv3

@
_vll I

":Pl _.

"_0' I

C}C'I

:(&C j
C;O

_eOl

:qlC. t
:100

i

f
/-"'-

®

OOeO

PR.gg bem_

_0
0

0
m

• _ SG-t tg boltd

X Tp4 {HO|/M§-37 boord
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3. Test/Point: VIDEO OUT terminal

Aaj. Point:ORV 1/PR-89 boatcl

Spec.: B,, 100 = 10 IRE

Fix L._AGC

.v,Q

@

!
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